簡易檢索 / 詳目顯示

研究生: 謝立邦
Shieh, Li-Pang
論文名稱: 基於狀態轉移支援向量機之可規劃式即時人體行為偵測
Programmable Real Time Human Behavior Detection Based on State Transition Support Vector Machine
指導教授: 王駿發
Wang, Jhing-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 52
中文關鍵詞: 支援向量機人體行為偵測
外文關鍵詞: SVM, human detection
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著科技進步日新月異,對於人體行為動作的偵測之研究也越來越普及。本論文提出一套基於狀態轉移支援向量機之可規劃系統用於偵測使用者所定義的人體動作,例如:舉手、起立、坐下、跌倒、蹲下….等,我們提出的系統可用於保全監控、居家看護、互動服務等系統中。
      本論文主要以狀態轉移支援向量機為辨識基礎,並且提出了可規劃的事件偵測,系統可即時的去抓取動作到訓練樣本中,使用者可依照自己想要的動作去定義,並且將想要定義的動作變成訓練樣本放入辨識器中做訓練,訓練後即可偵測此定義之動作。由於人體的動作都有相關且連續的特性,因此我們提出一個新的方法,將每時間點的影像資訊採用支援向量機辨識出的狀態與下一個時間點所辨識的狀態去做連結,且在每一個時間點上求出該狀態的自身機率加上該狀態與下一個狀態之間的轉移機率值,藉由Viterbi algorithm 求出一條最佳路徑,並求出最佳路徑的機率值。若此機率值超過某一個臨界點,則判斷為該事件。此系統在實驗中求得,在一般環境下正確率平均為82%, 說明此系統是有效且可規劃的。

    This thesis comprises of a programmable human behavior detection scheme based on the principal of state transition support vector machine (STSVM). This model is adopted for the classification of human behaviors and the state classification is done by implementing a programmable human behavior detection algorithm. The proposed module utilizes Viterbi’s model to detect the optimal path in state classification. For validating the proposed system, we defined five events such as (1) raising hand; (2) standing up; (3) squatting down; (4) falling down; and (5) sitting.
    This system can be programmed by the users and they can abide the rules to train each event classifier, of some human behaviors. Through this programmable approach easy implementation, flexible modification, real time human behavior detection could be highly achievable. Our approach can be accomplished in the ubiquitous computing environment, which we believe as our highlighting feature. Since every event is time-sliced, 10 images per second are initially obtained from web camera. Through the existence of relative
    Probability between the current image and next image a transition probability of these images could be found and state probability of each image shall be obtained by STSVM. These probabilities could be utilized to determine an optimal path, which in turns helps in checking all the paths for event detection. Experimental results prove robustness and effectiveness with a precision rate of 82%, which would be is highly suitable for human behavioral detection.

    摘要 .............................................................................................................i Abstract ...........................................................................................................ii 誌謝 ...........................................................................................................iv Contents..............................................................................................................................vii Figure List............................................................................................................................ix Table List…………………………………………………………………………………..xi Chapter 1. Introduction………………………………………………………..1 1.1 Backgroun………………………………………………………………………….1 1.2 Literature Survey ………………………………………………………………….2 1.3 Motivation…………………………………………………………………………5 1.4 Thesis Organization……………………………………………………………….5 Chapter 2. Related Works…………………………………………………….6 2.1 Review of Human Behavior Detection…………………………………………....6 2.2 System Architecture……………………………………………………………….7 2.3 Image Processing from Camera Input……………………………………………..8 2.4 Dilation and Erosion……………………………………………………………….9 2.5 Skin Color Detection……………………………………………………………..10 2.6 Contribution………………………………………………………………………13 Chapter 3. Programmable Real time Human behavior detection based on State Transition Support Vector Machine.............................................14 3.1 Programmable real-time human behavior detection system flow………………..14 3.2 Multi-class Support Vector Machine……………………………………………..18 3.2.1 Introduction to Support Vector Machine……………………………………….18 3.2.2 Multi-class Support Vector Machine…………………………………………...24 3.3 State Transition Support Vector Machine………………………………………...26 3.3.1 Multi-class Support Vector Machine…………………………………………...26 3.3.2 Transition Probability to get the path…………………………………………..28 3.3.3 State Probability and Initial State Probability………………………………….30 Chapter 4. Optimal Path Manipulation……………………………………32 4.1 Finding Optimal Path Using Viterbi......................................................................32 4.2 Event Classification with Highest Score…………………………………………33 4.3 An Example to Detect Label ……………………………………………….........34 4.4 An Example of Detect Initial Probability………………………………………..34 4.5 Transition Probability of Raise Hand Event (II)……………………….….……..35 4.6 State Transition SVM to Get The Path…………………………………………...36 4.7 Find optimum path by viterbe……………………………………………………37 4.8 A Numerical Example illustrating the process of Our Method…………………..38 4.9 Transition Probability of Events in Our System …………………………………39 Chapter 5. Conclusion and Future Work…………………...…………..40 5.1 Human behavior detection system by web camera………………………….......40 5.2 Precision Rate of Our System………………………………………......…..…..44 Chapter6 Conclusion and Future Work……………….………………..47 6.1 Conclusion……………………………………………………………………..47 6.2 Future Work……………………….……………………………………………48 References 49

    [1] Ismail Haritaoglu, David Harwood, Larry S. Davis, “W4: real-time surveillance of people and their activities,” IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol. 22, No. 8, August, 2000.
    [2] T. Olson and F. Brill, “Moving object detection and event recognition algorithms for smart cameras,” Proc. DARPA Image Understanding Workshop,
    pp. 159-175, 1997.
    [3] H. Ren and G. Xu, “Human action recognition in smart classroom,” in IEEE Proc. Int. Conf. on Automatic Face and Gesture Recognition, pp. 399-404, 2002.
    [4] J. Ben-Arie and Z. Wang, “Human activity recognition using multidimensional indexing,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1091-1104, August 2002
    [5] Ka Keung Lee and Yangsheng Xu, “Modeling human actions from learning,” IEEE International Conference on Intelligent Robot Systems, Sendai, Japan, 2004.
    [6] I.T. Jolliffe, Principal Component Analysis, 1986, Springer-Verlag.
    [7] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, 2002
    [8] Shao-Yi Chien, Liang-Gee Chen, “Fast Video Segmentation Algorithm With Shadow
    Cancellation, Global Motion Compensation, and Adaptive Threshold Techniques,” in
    IEEE Transaction on Multimedia, VOL. 6, NO. 5, OCTOBER 2004
    [9] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons, A. K. Jain, “A background model initialization algorithm for video surveillance,”Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International.
    [10] Pless, R, Larson, J., Siebers, S., and Westover, B., “Evaluation of local models of dynamic backgrounds,” Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), Vol. 2 , pp. 73-78, June 2003.
    [11] Tao Zhao, Ram Nevatia, “Tracking multiple humans in complex situations,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 26, No. 9, September 2004.
    [12] C. Cortes and V. Vapnik, “Support vector networks,”Machine Learning, vol. 20, pp. 273-297, 1995.
    [13] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer, 1995.
    [14] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998
    [15] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. Smola, “Input space vs. feature space in kernel-based methods,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1000-1017, 1999
    [16] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training and applications,” Tech. Rep. AIM-1602, MIT A.I. Lab.,1996
    [17] V. Vapnik, Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982
    [18] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.
    [19] Smola and B. Schölkopf, “A tutorial on support vector regression,” Tech. Rep. NC2-TR-1998-030, Neural and Computational Learning II, 1998
    [20] J. C. Burges and B. Schölkopf, “Improving the accuracy and speed of support vector learning machines,” in Advances in Neural Information Processing Systems 9 (M. Mozer, M. Jordan, and T. Petsche, eds.), pp. 375-381, Cambridge, MA: MIT Press, 1997.
    [21] M. Schmidt, “Identifying speaker with support vector networks,” in Interface '96 Proceedings, (Sydney), 1996.
    [22] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion of face and speech data for person identity verification,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1065-1074, 1999
    [23] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support vector machines,” in 1997 IEEE Workshop on Neural Networks for Signal Processing, pp. 276-285, 1997
    [24] G. Fung, O. L. Mangasarian, and J. Shavlik, “Knowledge-based support vector machine classifiers,” in Advances in Neural Information Processing, 2002.
    [25] T. Joachims, “Text categorization with support vector machines: learning with many relevant features,” in Proceedings of ECML-98, 10th European Conference on Machine Learning (C. Nédellec and C. Rouveirol, eds.), (Chemnitz, DE), pp. 137-142, Springer Verlag, Heidelberg, DE, 1998.
    [26] K. Crammer and Y. Singer, “On the learnability and design of output codes for multiclass problems,” in Computational Learning Theory, pp. 35-46, 2000
    [27] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik, “Predicting time series with support vector machines,” in Articial Neural Networks - ICANN'97 (W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, eds.), pp. 999-1004, 1997.
    [28] S. Mukherjee, E. Osuna, and F. Girosi, “Nonlinear prediction of chaotic time series using support vector machines,” in 1997 IEEE Workshop on Neural Networks for Signal Processing, pp. 511-519, 1997.
    [29] F. E. H. Tay and L. Cao, “Application of support vector machines in financial time series forecasting,” Omega, vol. 29, pp. 309-317, 2001.
    [30] L. J. Cao, K. S. Chua, and L. K. Guan, “c-ascending support vector machines for financial time series forecasting,” in 2003 International Conference on Computational Intelligence for Financial Engineering (CIFEr2003), (Hong Kong), pp. 317-323, 2003.
    [31] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector regression machines,” in Advances in Neural Information Processing Systems, vol. 9, p. 155, The MIT Press, 1997.
    [32] R. Fletcher, Practical methods of optimization. Chichester and New York: John Wiley and Sons, 1987.
    [33] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Automations and Remote Control, vol. 25, pp. 821-837, 1964.
    [34] N. J. Nilsson, Learning machines: Foundations of trainable pattern classifying systems. McGraw-Hill, 1965.
    [35] R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience, 1953.
    [36] C.-W. Hsu and C.-J. Lin. “A comparison of methods for multi-class support vector machines,” IEEE Transactions on Neural Networks, vol. 13, pp. 415-425, 2002

    下載圖示 校內:2008-02-07公開
    校外:2008-02-07公開
    QR CODE