| 研究生: |
陳政凱 Chen, Cheng-Kai |
|---|---|
| 論文名稱: |
水庫淤泥經由水熱法製備矽酸鈣板之研究 Preparation of Calcium Silicate Board from Water Reservoir Sediment via Hydrothermal Reaction |
| 指導教授: |
黃紀嚴
Huang, Chi-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 水庫淤泥 、矽酸鈣板 、水熱法 、雪矽鈣石 |
| 外文關鍵詞: | water reservoir sediment, calcium silicate board, hydrothermal reaction, tobermorite |
| 相關次數: | 點閱:157 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於台灣地區水庫淤積問題十分嚴重,而目前清淤後之淤泥多以廢棄處理,容易造成污染且不符成本,因此需要積極開發水庫淤泥資源化再利用。國內對於水庫淤泥資源化之研究,大多以燒製輕質骨材為主,但燒製輕質骨材之反應溫度甚高,因此以較低溫度之水熱法將水庫淤泥製備成矽酸鈣板材資源化,可有效減少能源的耗費。
本研究以石門水庫淤泥為原料,pH=13之NaOH水溶液為礦化劑,並額外添加氧化鈣幫助製備矽酸鈣材料,氧化鈣與水庫淤泥之重量比分別為1:1、1:2及1:3(簡稱為1-1、1-2及1-3系列),分別以造粒成型及注漿成型兩種不同製程進行研究,水熱反應溫度為180℃、200℃及220℃,反應時間則為8小時、12小時、24小時及48小時。
研究結果顯示,1-2及1-3系列(鈣矽比0.87、0.58)經過水熱反應後皆可合成出雪矽鈣石礦物相(Tobermorite),符合CNS對於矽酸鈣板材之規範。造粒成型製程系列,體密度約為1.2 g/cm3-1.4 g/cm3,抗壓強度約為2MPa-5MPa;注漿成形製程系列,體密度約為0.8 g/cm3-1.0 g/cm3,抗壓強度約為4MPa-7MPa。研究証實了水庫淤泥製備矽酸鈣板材的可行性,可使水庫淤泥資源化的方式更加多元。
Water reservoir sediment damages the volume of reservoirs and creates serious disposal problems in Taiwan. Recent years, there are many studies about preparation of lightweight aggregates (LAWs) from water reservoir sediment. To prepare LAWs usually needs very high sintering temperature and energy consumption. In this study, a new method of recycling the reservoir sediment is developed.
The experiment primarily studies the feasibility of calcium silicate board (CS board) made by reservoir sediment with CaO and NaOH addition. In this study, the influence of the reaction conditions such as different temperatures (180-220℃), times (8-48h) as well as different Ca/Si ratios of 1.75, 0.87 and 0.58 on CS board preparation were investigated. The green particles were made by two different processes, granulation and slip casting. The hydration products were characterized by XRD, SEM, OM and MTS.
The results showed that the main constituent of hydration products was tobermorite when Ca/Si=0.87 and 0.58. It is fit in CNS No.13777. The bulk densities of hydration products ranged between 0.8 g/cm3 and 1.4 g/cm3. The compressive strengths ranged between 2Mpa and 7MPa.
參考文獻
1. 何春蓀,「台灣地質概論」,中央地質調查所,1986。
2. S.Goñi, A.Guerrero, M.P.Luxán, A.Macías,“Activation of the fly ash pozzolanic reaction by hydrothermal conditions,”Cement and Concrete Research 33,pp.1399-1405,2003.
3. W. Jiang, D.M. Roy, “Hydrothermal processing of new fly ash cement,” Ceram. Bull. 71 (4) ,pp.642–647,1992.
4. 台灣綠建材標章評定基準,http://www.cabc.org.tw/gbm/HTML/website/index.asp
5. 水資源局,「水庫淤砂研究課題規劃」,1996。
6. 經濟部水利署,「現有水庫或壩堰概況年報」,2009。
7. 經濟部水利署,「近8年(91-98)公告水庫清淤量統計」,2010。
8. 吳素禎等人,「水庫淤泥固化與棄置」,中興工程顧問社/專案研究報告,1999。
9. 內政部統計處網站,http://www.moi.gov.tw/stat/
10. 陳清齊,楊奉儒,陳志恒,富氧化矽再生原料產製纖維水泥板之研究,鑛冶V.51,No.1,pp.88-97,2007。
11. 中華民國國家標準CNS13777號。
12. 楊南如,C-S-H凝膠及其測試方法,矽酸鹽通報vol(2),2003。
13. 趙曉剛,水化矽酸鈣的合成及其組成、結構與形貌,武漢理工大學碩士論文,2010。
14. I.G.Richardson, “Tobermorite/jennite- and tobermorite/ calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume,”Cement and Concrete Research 34(9), pp.1733-1777,2004
15. K. Luke,“Phase studies of pozzolanic stabilized calcium silicate hydrates at 180 ºC,”Cement and concrete research 34(9),pp.1725-1732 (2004).
16. Walter Garra, Fabio Marchetti, Stefano Merlino,“Tb/Na tobermorite:Thermal behaviour and high temperature products,”Journal of Solid State Chemistry 182(6),pp.1529-1532,2009.
17. H. Youssef, D. Ibrahim, S. Komameni, K.J.D. Mackenzie,“Synthesis of Al-substituted 11Å tobermorite from trachyte rock by hydrothermal treatment,”Ceramics international 36(1),pp.203-209,2010.
18. S.Shaw, S.M.Clark, C.M.B.Henderson,“Hydrothermal formation of the calcium silicate hydrates, tobermorite(Ca5Si6O16(OH)2‧4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study,”Chemical Geology 167,pp.129–140,2000.
19. R. Siauciunas and K. Baltakys,“Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz,” Cement and Concrete Research 34, pp.2029–2036 ,2004.
20. “Xonotlite”, Mineral Data Publishing, version 1.2, 2001
21. Fabienne Méducin, Bruno Bresson, Nicolas Lequeux, Marie-Noëlle de Noirfontaine and Hélène Zanni,“Calcium silicate hydrates investigated by solid-state high resolution 1H and 29Si nuclear magnetic resonance ”, Cement and concrete research 37(5),pp.631-638,2007.
22. G.W.Morey,“Hydrothermal Synthesus,”Journal of the American Ceramic Society 36(9),pp.279-285,1953.
23. R.I.Walton,“Subcritical Solvothermal Synthesis of Condensed Inorganic materials,”Chemical Society Reviews 31,pp.230-238,2002.
24. Rabenau,“The Role of Hydrothermal Synthesis in Preparative Chemistry,”Angewandte Chemie: International Edition in English 24,pp.1026-1040,1985.
25. 龔人俠,「水泥化學概論」,台灣區水泥工業同業公會,1977。
26. Carl A.Menzel,“Strength and Volume Change Of Steam-Cured Portland Cement Mortar and Concrete,”Journal Proceedings 31(11),pp.125-148,1934.
27. Carl A.Menzel,“Studies OF High Pressure Steam curing Of Tamped Hollow Concrete Block,” Journal Proceedings 32(9),pp.51-64,1935.
28. Carlos A. Ríos,Craig D. Williams, Michael A. Fullen, “Hydrothermal synthesis of hydrogarnet and tobermorite at 175 °C from kaolinite and metakaolinite in the CaO–Al2O3–SiO2–H2O system: A comparative study,” Appl. Clay Sci. 43, pp.228–237,2009.
29. Xiang Huang, Dongliang Jiang, Shouhong Tan,“Novel hydrothermal synthesis of tobermorite fibers using Ca(II)-EDTA complex precursor,” Journal of the European Ceramic Society 23,pp.123–126,2003.
30. H. Youssef, D. Ibrahim, S. Komameni, K.J.D. Mackenzie, “Synthesis of Al-substituted 11Å tobermorite from trachyte rock by hydrothermal treatment,” Ceramics international 36,pp.203-209,2010.
31. N. J. Coleman and D. S. Brassington,“Synthesis of Al-substituted 11Å tobermorite from newsprint recycling residue: a feasibility study,” Material research bulletin 38,pp.485-497,2003.
32. Y. Hiramatsu, Y. Oka, Int.J.Rock Mech Min.Sci.pp.89,1966.
33. Y. Li, D. Wu, J. Zhang, L. Chang, Z. Fang ,“Measurement and statistics of single pellet mechanical strength of differently shaped catalysts,”Powder Technology 113,pp.179-184,2000.
34. R. Jauberthie, M. Temimi, andM. Laquerbe, “Hydrothermal transformation of tobermorite gel to 10Å tobermorite,” Cement and Concrete Research 26,pp.1335-1339,1996.
35. 塗耕業,「水泥漿體添加卜作嵐材料之水化特性研究」,國立中興大學土木工程研究所,2007。
36. P. Chindaprasirt, K. Pimraksa,“A study of fly ash–lime granule unfired brick,” Powder Technology 182,pp.33-41,2008.
37. N.Y. Mostafaa, S.A.S. El-Hemalyb, E.I. Al-Wakeelc, S.A. El-Korashyc, P.W. Brown,“Hydraulic activity of water-cooled slag and air-cooled slag at different temperatures,” Cement and concrete research 31,pp.475-484,2001.
38. 閻嘉義,「高溫高壓蒸汽養護混凝土長期之微觀結構演變」,國立中興大學土木工程研究所,2009。
39. 楊錦懷,「高性能混凝土材料物化性質探討整合型研究(I)---高性能混凝土蒸氣養護對材料性質之影響」,國立台灣科技大學營建工程系國科會計畫,1996。
40. 陳衍銘,「氫氧化鈉添加水庫淤泥製備輕質骨材:乾燥程序和燒製溫度」,國立成功大學資源工程研究所,2010。
41. 傅建璋,「石門水庫淤泥燒製輕質骨材之研究」,國立成功大學資源工程研究所,2008。
42. 陳建誌,「利用陳化處理二氧化鈦/禾樂石複合光觸媒粉末之影響」,國立成功大學資源工程研究所,2010。
43. 胡文蛟,「蒸壓的纖維矽酸鈣製品的硬化」,第六屆纖維水泥製品學術、標準、技術信息經驗交流會論文集,中國矽酸鹽學會,蘇州,2007。