簡易檢索 / 詳目顯示

研究生: 楊鵬
Yang, Peng
論文名稱: 主成份分析與獨立成份分析應用於人臉辨識之研究
A Study on PCA and ICA Based Approaches for Face Recognition
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: PCAICALDA人臉辨識
外文關鍵詞: PCA, ICA,, LDA, face recognition
相關次數: 點閱:87下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對PCA、ICA和它們的變形─2DPCA、FICA,以及LDA等數種以基底影像之線性組合來表示原影像的辨識方法進行多項人臉辨識實驗。本論文主要的貢獻是發展一個共同的性能比較平台,並探討影像前處理和各個辨識方法搭配不同距離量測方式對於人臉辨識結果的影響,進而找出在不同情況下較適用的方法。本論文使用了兩種資料庫來進行實驗,第一種是由FERET資料庫所提供的原始影像剪裁而來,第二種是自製的小型資料庫。實驗結果除了証實影像前處理具提昇人臉辨識效果外,亦發現FICA和LDA之辨識率的相似以及2DPCA和LDA不同的適用場合。

    Many face recognition experiments have been conducted in this thesis to compare the performance among several face recognition algorithms including PCA, ICA and their variants (2DPCA, FICA), as well as LDA, in which these algorithms employ the linear combinations of the basis images to represent the original image. One of the major contributions of this thesis is to develop a common platform that can be used to compare the performance among different face recognition algorithms under the same criterion. The other contribution is to investigate the effects of image preprocessing and recognition algorithms with different performance metrics on face recognition results so that the user can choose a suitable algorithm for a specific application. Two databases are used in the experiments. One is adapted from the FERET database, while the other is a self-made small-scale database. Experimental results not only verify that image preprocessing indeed can improve the performance of face recognition algorithms but also show the similarity between the recognition rates of FICA and LDA as well as different application scenarios of 2DPCA and LDA.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 V 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文架構 6 第二章 影像前處理 8 2.1 前言 8 2.2 影像縮放 8 2.3 直方圖等化 10 2.4 算術平均濾波器 12 第三章 主要演算法 14 3.1 前言 14 3.2 主成份分析 14 3.3 獨立成份分析 16 3.4 線性判別分析 23 3.5 二維主成份分析 25 3.6 費雪獨立成份分析 29 第四章 實驗結果 31 4.1 前言 31 4.2 FERET資料庫 31 4.2.1 僅使用正面影像的實驗 32 4.2.2 包含頭部偏轉的實驗 51 4.3 自製實驗室成員資料庫 69 4.4 實驗結果分析 81 第五章 結論與未來研究 83 參考文獻 85

    [1] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive Neurosci., vol. 3, no. 1, pp. 71-86, 1991.
    [2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997.
    [3] M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Networks, vol. 13, no. 6, pp. 1450-1464, Nov. 2002.
    [4] Keun-Chang Kwak and Witold Pedrycz, “Face recognition using an enhanced independent component analysis approach,” IEEE Trans. Neural Networks, vol. 18, no. 2, pp. 530-541, Mar. 2007.
    [5] B. Moghaddam, “Principal manifolds and probabilistic subspaces for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 6, pp. 780-788, Jun. 2002.
    [6] B. A. Draper, K. Baek, M. S. Bartlett, and J. R. Beveridge, “Recognizing face with PCA and ICA,” Comput. Vis. Image Understanding, vol. 91, pp. 115-137, 2003.
    [7] Jian Yang, David Zhang, Alejandro F. Frangi, and Jing-yu Yang, “Two-dimensional PCA: A new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131-137, Jan. 2004.
    [8] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 2002.
    [9] A. and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, pp. 411-430, 2000.
    [10] David C. Lay, Linear Algebra and Its Applications, Addison Wesley, 2005.
    [11] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput., vol. 7, no. 6, pp.1129-1159, 1995.
    [12] Robert J. Schalkoff, Pattern Recognition: Statistical, Structural and Neural Approaches, John Wiley and Sons, 1991.
    [13] Jian Yang and Chengjun Liu, ”Horizontal and vertical 2DPCA-based discriminant analysis for face verification on a large-scale database,” IEEE Trans. Information and Security, vol. 2, no. 4, pp. 781-792, Dec. 2007.
    [14] P. J. Phillips, H. Wechsler, J. Juang, and P. J. Rauss, “The FERET database and evaluation procedure for face recognition algorithms,” Image Vision Comput. J., vol. 16, no. 5, pp. 295-306, 1998.

    下載圖示 校內:2012-08-26公開
    校外:2013-08-26公開
    QR CODE