簡易檢索 / 詳目顯示

研究生: 邱煌鑌
Chiu, Huang-Pin
論文名稱: 利用標記模型建置術後病人之放射治療臨床靶區自動化-以頭頸癌為例
Automatic Clinical Target Volume Segmentation on Postoperative Cancer Patients:Case Studies of Head and Neck Cancer
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 60
中文關鍵詞: 醫療影像電腦斷層頭頸癌術後病人放射治療治療計劃臨床靶區自動化標記系統分割模型語意分割深度學習卷積神經網路
外文關鍵詞: Medical Image, Computed Tomography, Head and Neck Cancer, Postoperative, Radiation Therapy, Treatment Planning, Clinical Target Volume, Automatic Segmentation System, Segmentation Model, Semantic Segmentation, Deep Learning, Convolutional Neural Networks
相關次數: 點閱:196下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 放射治療是癌症治療當中重要的一環,現代的放射治療大多採用逆向治療計劃設計:放射腫瘤醫師會在電腦斷層影像上描繪出希望照射以及希望避免的區域,再交由醫學物理師設計適合的治療計劃。近年來不少研究致力於發展標記模型用以輔助醫師進行描繪,其針對器官或是腫瘤本體進行標記為主。但實際臨床使用上,臨床靶區的描繪才是放射腫瘤科醫師最終需要解決的目標。
    在頭頸部的鱗狀細胞癌中,手術往往為第一線的治療;術後病理若有高風險因子者,則需要接受術後的輔助放射治療。癌症手術因需要額外切除的安全距離,經常會造成解剖構造及外觀上的重大改變。在此類病人身上,照射區域與器官的描繪對於醫師來說相當困難且耗時,還需藉由其他報告輔助判斷。其原因為再制定治療計劃時,不只手術相關區域需要涵蓋,其他潛在高風險區域也將會是治療的目標。本研究將整合醫師藉由報告所得知的資訊,基於電腦斷層影像中所提供的特徵,自動化描繪出臨床靶區。
    本研究中利用深度學習的方式來實現臨床靶區自動化標記。於電腦斷層影像中採用CNN模型將提取高維度之特徵,模擬醫師先備知識及其關注重點,並加上額外的目標向量,對模型進行決策上的指引,模擬醫師經由報告輔助後所下的判斷。藉上述兩者最終達到目標臨床靶區之描繪。
    在實驗中,本研究利用成大醫院放射腫瘤部中204位術後頭頸癌病人,當中使用193位病人資料進行模型訓練,11位病人作獨立測試資料使用。實驗結果說明本研究所提出的方法能克服現今模型受限於目標臨床靶區進行標記的短處,並證明所提出之目標向量有其重要性。實驗最後於臨床上進行評估,比對有無使用自動化標記輔助其時間與不同醫師在標記上風格的差異。實際輔助醫師進行標記能夠減少強烈的個人特色於標記上,更貼近醫師間共識性的標記,其所帶來的成效相當不錯。

    Radiation therapy is an important part of cancer treatment. Modern radiation therapy often adopted inverse treatment planning design, radiation oncologist contouring the area to treated and the area to be avoided. Subsequently, medical physicists planning the appropriate treatment planning. However, a lot of research considering to develop the automatic segmentation model recently to assist physician contouring. To our knowledge, these models usually focus on organ or tumor itself, but clinical target volume will be the final goal in clinical practice.
    In squamous cell carcinoma of head and neck, surgical resection often is the essential one. Along with adjuvant radiotherapy for patients with high-risk pathological features. Wide excision of the primary tumor results in anatomical changes that caused the delineation of the clinical target volume is difficult for physicians, and have to depend on the report and nearly impossible for traditional automatic segmentation models.
    In our study, we aimed to adopt deep learning method to perform automatic clinical target volume segmentation. Firstly, we extracted the high dimension feature via the CNN model to simulate physician domain knowledge and the main interesting area of it. Secondly, we imported additional information called "Target Vector" acting the roles of reports that physicians depend on. Finally, combining two types of information in deep learning architecture then got the final segmentation results.
    We conducted our experiments on postoperative head and neck cancer patients’ data from the Department of Radiation Oncology at National Cheng Kung University Hospital (NCKUH). Totally 204 cancer patients, 193 patients for model training, and 11 patients for independent testing. The experimental results demonstrated that our study proposed a model to outperform the traditional model limitation segment on the clinical target volume and showed the importance of the Target Vector. Finally, we compared the cost of time and delineation style's difference with and without our model in clinical practice. We used it able to eliminate the strong personal style in contouring via our model and brought better results.

    中文摘要 I Abstract III 誌謝 V Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 2 1.3 Thesis Organization 3 Chapter 2 Related Work 5 2.1 Atlas-based Segmentation 5 2.2 Deep Learning-based Segmentation 6 2.3 Attention Mechanism 7 2.4 Clinical Target Volume Segmentation 8 Chapter 3 Preliminary Study 9 3.1 Reference Preoperative CT scans 9 3.2 Multi-label CTV Segmentation 10 3.3 Patch Prediction 11 3.4 Encoder with Backbone 12 3.5 Summary 13 Chapter 4 Automatic CTV Segmentation 14 4.1 Overview 14 4.2 Target Vector 14 4.3 CGLR Block 17 4.4 Attention Module 18 4.5 Automatic CTV Segmentation 19 Chapter 5 Experiments 21 5.1 Experimental Design 21 5.1.1 Dataset Description 21 5.1.2 Data Preprocessing 24 5.1.3 Evaluation Metrics 25 5.1.4 Experimental Setting 25 5.2 Model Evaluation 26 5.3 Ablation Study 33 Chapter 6 Discussion 40 Chapter 7 Conclusion and Future Work 49 7.1 Conclusion 49 7.2 Future Work 50 Reference 52

    Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., …Zheng, X. "TensorFlow: A system for large-scale machine learning". Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, 2016.
    Allozi, R., Li, X. A., White, J., Apte, A., Tai, A., Michalski, J. M., …Naqa, I.El. "Tools for consensus analysis of experts’ contours for radiotherapy structure definitions". Radiotherapy and Oncology, 2010.
    Ayyalusamy, A., Vellaiyan, S., Subramanian, S., Ilamurugu, A., Satpathy, S., Nauman, M., …Madineni, A. "Auto-segmentation of head and neck organs at risk in radiotherapy and its dependence on anatomic similarity". Radiation Oncology Journal, 2019.
    Balagopal, A., Nguyen, D., Morgan, H., Weng, Y., Dohopolski, M., Lin, M.-H., …Jiang, S. "A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy", 2020.
    Barton, M. B., Jacob, S., Shafiq, J., Wong, K., Thompson, S. R., Hanna, T. P., &Delaney, G. P. "Estimating the demand for radiotherapy from the evidence: A review of changes from 2003 to 2012". Radiotherapy and Oncology, 2014.
    Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P. A., …Jodoin, P. M. "Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?". IEEE Transactions on Medical Imaging, 2018.
    Bertels, J., Eelbode, T., Berman, M., Vandermeulen, D., Maes, F., Bisschops, R., &Blaschko, M. B. "Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice". Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019.
    Bisello, S., Renzulli, M., Buwenge, M., Calculli, L., Sallustio, G., Macchia, G., …Guido, A. "An atlas for clinical target volume definition, including elective nodal irradiation in definitive radiotherapy of biliary cancer". Oncology Letters, 2019.
    Brouwer, C. L., Steenbakkers, R. J. H. M., van denHeuvel, E., Duppen, J. C., Navran, A., Bijl, H. P., …van’t Veld, A. A. "3D Variation in delineation of head and neck organs at risk". Radiation Oncology, 2012.
    Chen, S., Ma, K., &Zheng, Y. "Med3D: Transfer Learning for 3D Medical Image Analysis", 2019.
    Chollet, F., &others. "Keras", 2015.
    Corey, A. S., El-Deiry, M. W., Baddour, H. M., Cavazuti, B. M., Hudgins, P. A., &McCarty, J. L. "Imaging of surgical free flaps in head and neck reconstruction". American Journal of Neuroradiology, 2019.
    Daisne, J. F., &Blumhofer, A. "Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: A clinical validation". Radiation Oncology, 2013.
    Eller, Y., Klass, N., Schmuecking, M., Elicin, O., Bigler, R., Tille, J., …Geretschlaeger, A. "Are contouring time and multimodality imaging prognostic factors for radiation therapy of advanced head and neck cancer?". Cancer Imaging, 2015.
    Fitzmaurice, C., Allen, C., Barber, R. M., Barregard, L., Bhutta, Z. A., Brenner, H., …Naghavi, M. "Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study Global Burden ". JAMA Oncology, 2017.
    Girshick, R., Donahue, J., Darrell, T., &Malik, J. "Region-Based Convolutional Networks for Accurate Object Detection and Segmentation". IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.
    Gordienko, Y., Gang, P., Hui, J., Zeng, W., Kochura, Y., Alienin, O., …Stirenko, S. "Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer". Advances in Intelligent Systems and Computing, 2019.
    Gotra, A., Sivakumaran, L., Chartrand, G., Vu, K. N., Vandenbroucke-Menu, F., Kauffmann, C., …Tang, A. "Liver segmentation: indications, techniques and future directions". Insights into Imaging, 2017.
    Grégoire, V., Ang, K., Budach, W., Grau, C., Hamoir, M., Langendijk, J. A., …Lengele, B. "Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines". Radiotherapy and Oncology, 2014.
    Grégoire, V., Eisbruch, A., Hamoir, M., &Levendag, P. "Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck". Radiotherapy and Oncology, 2006.
    Grégoire, V., Evans, M., Le, Q. T., Bourhis, J., Budach, V., Chen, A., …Grau, C. "Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines". Radiotherapy and Oncology, 2018.
    Han, X., Hibbard, L., O’connell, N., &Willcut, V. "Automatic segmentation of parotids in head and neck CT images using multi-atlas fusion". … Image Analysis for the Clinic: …, 2010.
    Han, X., Hoogeman, M. S., Levendag, P. C., Hibbard, L. S., Teguh, D. N., Voet, P., …Wolf, T. K. "Atlas-based auto-segmentation of head and neck CT images". Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008.
    Hansen, E. K., Bucci, M. K., Quivey, J. M., Weinberg, V., &Xia, P. "Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer". International Journal of Radiation Oncology Biology Physics, 2006.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., …Larochelle, H. "Brain tumor segmentation with Deep Neural Networks". Medical Image Analysis, 2017.
    He, K., Zhang, X., Ren, S., &Sun, J. "Deep residual learning for image recognition". Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016.
    Hong, T. S., Tomé, W. A., &Harari, P. M. "Heterogeneity in head and neck IMRT target design and clinical practice". Radiotherapy and Oncology, 2012.
    Hu, J., Shen, L., &Sun, G. "Squeeze-and-Excitation Networks". Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018.
    Huang, G., Liu, Z., Van DerMaaten, L., &Weinberger, K. Q. "Densely connected convolutional networks". Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017.
    Huang, L., Weng, M., Shuai, H., Huang, Y., Sun, J., &Gao, F. "Automatic Liver Segmentation from CT Images Using Single-Block Linear Detection". BioMed Research International, 2016.
    Ibragimov, B., &Xing, L. "Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks:". Medical Physics, 2017.
    Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, &Li Fei-Fei. "ImageNet: A large-scale hierarchical image database", 2009.
    Kaul, C., Manandhar, S., &Pears, N. "Focusnet: An attention-based fully convolutional network for medical image segmentation". Proceedings - International Symposium on Biomedical Imaging, 2019.
    Kingma, D. P., &Ba, J. L. "Adam: A method for stochastic optimization". 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
    Klein, A., Warszawski, J., Hillengaß, J., &Maier-Hein, K. H. "Towards whole-body CT bone segmentation". Informatik Aktuell, 2018.
    Kuo, W., Häne, C., Yuh, E., Mukherjee, P., &Malik, J. "PatchFCN for Intracranial Hemorrhage Detection", 2018.
    LaMacchia, M., Fellin, F., Amichetti, M., Cianchetti, M., Gianolini, S., Paola, V., …Widesott, L. "Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer". Radiation Oncology, 2012.
    Lakhani, P., &Sundaram, B. "Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks". Radiology, 2017.
    Li, H., Cheng, J. Z., Chou, Y. H., Qin, J., Huang, S., &Lei, B. "AttentionNet: Learning where to focus via attention mechanism for anatomical segmentation of whole breast ultrasound images". Proceedings - International Symposium on Biomedical Imaging, 2019.
    Li, S., Xiao, J., He, L., Peng, X., &Yuan, X. "The Tumor Target Segmentation of Nasopharyngeal Cancer in CT Images Based on Deep Learning Methods". Technology in Cancer Research & Treatment, 18, 1533033819884561–1533033819884561, 2019.
    Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., &Belongie, S. "Feature pyramid networks for object detection". Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017.
    Liu, F., Jang, H., Kijowski, R., Bradshaw, T., &McMillan, A. B. "Deep learning MR imaging-based attenuation correction for PET/MR imaging". Radiology, 2018.
    Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., …Stumpe, M. C. "Detecting Cancer Metastases on Gigapixel Pathology Images", 2017.
    Maas, A. L., Hannun, A. Y., &Ng, A. Y. "Rectifier nonlinearities improve neural network acoustic models". In ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.
    Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., …van derMaaten, L. "Exploring the Limits of Weakly Supervised Pretraining". Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018.
    Men, K., Zhang, T., Chen, X., Chen, B., Tang, Y., Wang, S., …Dai, J. "Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning". Physica Medica, 2018.
    Nair, V., &Hinton, G. E. "Rectified linear units improve Restricted Boltzmann machines". ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010.
    Ng, R. W. M., Chan, J. Y. W., Mok, V., Leung, M. S. C., Yuen, A. P. W., &Wei, W. I. "Clinical implications of anterolateral thigh flap shrinkage". Laryngoscope, 2008.
    Nguyen, D. C. T., Benameur, S., Mignotte, M., &Lavoie, F. "Superpixel and multi-atlas based fusion entropic model for the segmentation of X-ray images". Medical Image Analysis, 2018.
    Rafiei, S., Nasr-Esfahani, E., Najarian, K., Karimi, N., Samavi, S., &Soroushmehr, S. M. R. "Liver Segmentation in CT Images Using Three Dimensional to Two Dimensional Fully Convolutional Network". Proceedings - International Conference on Image Processing, ICIP, 2018.
    Raghu, M., Zhang, C., Kleinberg, J., &Bengio, S. "Transfusion: Understanding Transfer Learning for Medical Imaging", 2019.
    Ronneberger, O., Fischer, P., &Brox, T. "U-net: Convolutional networks for biomedical image segmentation". Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., …Fei-Fei, L. "ImageNet Large Scale Visual Recognition Challenge". International Journal of Computer Vision, 2015.
    Shelhamer, E., Long, J., &Darrell, T. "Fully Convolutional Networks for Semantic Segmentation". IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
    Simonyan, K., &Zisserman, A. "Very deep convolutional networks for large-scale image recognition". 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
    Souza, J. C., Bandeira Diniz, J. O., Ferreira, J. L., França da Silva, G. L., Corrêa Silva, A., &dePaiva, A. C. "An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks". Computer Methods and Programs in Biomedicine, 2019.
    Srivastava, Y., Murali, V., Dubey, S. R., &Mukherjee, S. "Visual Question Answering using Deep Learning: A Survey and Performance Analysis", 2019.
    Urban, S., &Tanacs, A. "Atlas-based global and local RF segmentation of head and neck organs on multimodal MRI images". International Symposium on Image and Signal Processing and Analysis, ISPA, 2017.
    Veiga, C., McClelland, J., Moinuddin, S., Lourenço, A., Ricketts, K., Annkah, J., …Royle, G. "Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations". Medical Physics, 2014.
    Verbakel, W. F. A. R., Cuijpers, J. P., Hoffmans, D., Bieker, M., Slotman, B. J., &Senan, S. "Volumetric Intensity-Modulated Arc Therapy Vs. Conventional IMRT in Head-and-Neck Cancer: A Comparative Planning and Dosimetric Study". International Journal of Radiation Oncology Biology Physics, 2009.
    Wei, J. W., Tafe, L. J., Linnik, Y. A., Vaickus, L. J., Tomita, N., &Hassanpour, S. "Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks". Scientific Reports, 2019.
    Woo, S., Park, J., Lee, J. Y., &Kweon, I. S. "CBAM: Convolutional block attention module". Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018.
    Wu, Y., &He, K. "Group Normalization". International Journal of Computer Vision, 2020.
    Xie, S., Girshick, R., Dollár, P., Tu, Z., &He, K. "Aggregated residual transformations for deep neural networks". Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017.
    Yakubovskiy, P. "Segmentation Models". GitHub Repository, 2019.
    Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D. P., &Chen, D. Z. "Deep adversarial networks for biomedical image segmentation utilizing unannotated images". Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017.
    Zhao, L., Wan, Q., Zhou, Y., Deng, X., Xie, C., &Wu, S. "Erratum: The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma (Radiotherapy and Oncology (2011) 98 (23-27))". Radiotherapy and Oncology, 2011.
    Zhou, T., Ruan, S., &Canu, S. "A review: Deep learning for medical image segmentation using multi-modality fusion". Array, 2019.
    Zhou, Z., Xue-Chang, Z., Si-Ming, Z., Hua-Fei, X., &Yue-Ding, S. "Semi-automatic liver segmentation in CT images through intensity separation and region growing". Procedia Computer Science, 2018.
    Zhu, W., Huang, Y., Zeng, L., Chen, X., Liu, Y., Qian, Z., …Xie, X. "AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy". Medical Physics, 2019.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE