簡易檢索 / 詳目顯示

研究生: 王語琤
Wang, Yu-Cheng
論文名稱: 建立核醣核酸5端未轉譯區上的轉譯調控元件資料庫來探討細胞的蛋白合成的調控機制
Construction of database of translational regulation motifs in mRNA 5'UTR to explore the control mechanism of protein synthesis
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 34
中文關鍵詞: 轉譯調控IRESuORF核糖體分析
外文關鍵詞: translation control, IRES, uORF, ribosome profiling
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因表達的轉譯調控機制可分為兩種類型:cap-dependent和cap-independent。IRES (Internal Ribosome Entry Site)位於5'UTR區域,是一個可以吸引ribosome複合物合成蛋白質的調控元件。IRES參與了細胞凋亡和生長因子調節等重要的生理程序且多屬於癌基因。IREZone (Internal Ribosome Entry Zone)為多個IRES結構不間斷且重疊的區域,已被證明具備更強的轉譯調控能力。因此了解基因是否帶有IREZone或IRES對於研究該基因的轉譯調控機制是非常有益的。在本研究中,我們使用scan for matches軟體,以預測每個mRNA 5'UTR transcript是否帶有IRES,然後,我們定義三個重疊以上的IRES區域稱為IREZone。uORF(upstream open reading frames)位於5'UTR的上游轉譯調控元件,多屬於致癌基因且參與重要生理過程的調控。ribosome profiling是提供了基因體在蛋白質合成的資訊的資料,結合ribosome profiling可以清楚看到轉譯與調控元件之間的關係。最後,建立了一個mRNA 5’UTR translational regulation motifs資料庫,其網址為http://cosbi2.ee.ncku.edu.tw/transbrowser/。

    The translational regulation mechanisms of gene expression can be divided into two types: Cap-dependent and IRES-dependent. (Internal Ribosome Entry Site) IRES, located in the 5’UTR region, is a cis-acting element which can attract the ribosome complexes to synthesize proteins. IRES is known to be involved in cell apoptosis and the regulation of oncogenes and growth factors. IREZone (Internal Ribosome Entry Zone), a region of multiple overlapping IRES structures, has been shown to have strong translational regulation capability. Therefore, knowing the information of IREZone or IRES in the 5’UTR of a gene is very helpful for studying the translational regulation mechanism of that gene. In this study, we use the Scan-For-Matches software to identify the IRES in the 5’UTR region of each human mRNA transcript. Then we define IREZone as a region with at least three overlapping IRES. uORF is the open reading frames locates 5’UTR upstream and most of them which involve in some important regulations of biological process belong to Oncogene. Ribosome profiling provides information of genetic synthesis in proteins. It can understand clearly relations between translational control and cis-acting element by means of combining analysis of ribosome profiling. Finally, we construct a database called mRNA 5’UTR translational regulation motifs, that is available online at http://cosbi2.ee.ncku.edu.tw/transbrowser/.

    中文摘要 I 英文延伸摘要 II 致謝 V 目錄 VI 英文縮寫對照 X 第一章 研究背景與動機 1 1.1 轉譯調控 1 1.2 IRES 2 1.3 uORF 3 1.4 ribosome profiling 4 1.5 相關資料庫網站 5 1.6 動機 8 第二章 資料來源與方法 10 2.1 網頁系統建置 10 2.2 系統環境與軟體 11 2.3 基因資訊與序列收集與處理 11 2.4 IRES資料的收集與處理 12 2.5 uORF資料的收集與處理 16 2.6 ribosome profiling資料的收集與處理 16 第三章 使用介面和實例探究 18 3.1 資料庫網站介面 18 3.1.1 預測功能 19 3.1.2 搜尋功能 20 3.1.3 瀏覽功能 25 3.2 實例探究 26 第四章 結論 31 參考文獻 32

    [1] S. D. Baird, M. Turcotte, R. G. Korneluk, and M. Holcik, “Searching for IRES,” RNA (New York, N. Y.), vol. 12, no. 10, pp. 1755-1785, 2006.
    [2] C. Barbosa, I. Peixeiro, and L. Romão, “Gene expression regulation by upstream open reading frames and human disease,” PLOS genetics, vol. 9, no. 8, p. e1003529, 2013.
    [3] A. G. Cadara, L. Zhonga, A. Lin, M. O. Valenzuelac, and C. C. Lim, “Upstream open reading frame in 5'-untranslated region reduces titin mRNA translational efficiency,” Biochemical and biophysical research communications, vol. 453, no. 1, pp. 185-191, 2014.
    [4] S. E. Calvo, D. J. Pagliarini, and V. K. Mootha, “Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 18, pp. 7507-7512, 2009.
    [5] W. M. Chen, “IRES Omnibus:An integrated web server for predicting and searching the human genes bearing the IRES elements”.
    [6] G. Grillo, F. Licciulli, S. Liuni, E. Sbisà, and G. Pesole, “PatSearch: A program for the detection of patterns and structural motifs in nucleotide sequences,” Nucleic acids research, vol. 31, no. 13, pp. 3608-3612, 2003.
    [7] P. J. Hanson, H. M. Zhang, M. G. Hemida, X. Ye, Y. Qiu, and D. Yang, “IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis,” Frontiers in microbiology, vol. 3, p. 92, 2012.
    [8] D. Karolchik, R. Baertsch, M. Diekhans, T. S. Furey, A. Hinrichs, Y. T. Lu, K. M. Roskin, M. Schwartz, C. W. Sugnet, D. J. Thomas, R. J. Weber, D. Haussler, and W. J. Kent, “The UCSC Genome Browser Database,” Nucleic acids research, vol. 31, no. 1, pp. 51-54, 2003.
    [9] D. H. Lackner, M. W. Schmidt, S. Wu, D. A. Wolf, and J. Bähler, “Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast,” Genome biology, vol. 13, no. 4, p. R25, 2012.
    [10] S. Y. Le, and J. V. M. Jr, “A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs,” Nucleic acids research, vol. 25, no. 2, pp. 362-369, 1997.
    [11] S. Lee, B. Liu, S. Lee, S. X. Huang, B. Shen, and S. B. Qian, “Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 37, pp. E2424-E2432 , 2012.
    [12] T. L. Lenstra, J. Rodriguez, H. Chen, and D. R. Larson, “Transcription Dynamics in Living Cells,” Annual review of biophysics, vol. 45, 2016.
    [13] J. L. Llácer, T. Hussain, L. Marler, C. E. Aitken, A. Thakur, J. R. Lorsch, A. G. Hinnebusch, and V. Ramakrishnan, “Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex,” Molecular cell, vol. 59, no. 3, pp. 399-412, 2015.
    [14] A. M. Michel, and P. V. Baranov, “Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale,” Wiley interdisciplinary ieviews. RNA, vol. 4, no. 5, pp. 473-490, 2013.
    [15] M. Michel, G. Fox, A. M. Kiran, C. D. Bo, P. B. O’Connor, S. M. Heaphy, J. P. Mullan, C. A. Donohue, D. G. Higgins, and P. V. Baranov, “GWIPS-viz: development of a ribo-seq genome browser,” Nucleic acids research, vol. 42, pp. D859-864, 2014.
    [16] M. Mokrejs, V. Vopálenský, O. Kolenaty, T. Masek, Z. Feketová, P. Sekyrová, B. Skaloudová, V. Kríz, and M. Pospísek, “IRESite: the database of experimentally verified IRES structures (www.iresite.org) ,” Nucleic acids research, vol. 34, pp. D125-130, 2006.
    [17] M. Payton, S. Scully, G. Chung, and S. Coats, “Deregulation of cyclin E2 expression and associated kinase activity in primary breast tumors,” Oncogene, vol. 21, no. 55, pp. 8529-8534, 2002.
    [18] G. Pesol, S. Liuni, G. Grillo, F. Licciulli, F. Mignone, C. Gissi, and C. Saccone, “UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs. Update 2002,” Nucleic acids research, vol. 30, no. 1, pp. 335-340, 2002.
    [19] D. Ruggero, “Translational control in cancer etiology,” Cold Spring Harbor perspectives in biology, vol. 5, no. 2, 2013.
    [20] R. Stumpf, M. V. Moreno, A. B. Olshen, B. S. Taylor, and D. Ruggero, “The translational landscape of the mammalian cell cycle,” Molecular cell, vol. 52, no. 4, pp. 574-582, 2013.
    [21] T. Tebaldi, A. Re, G. Viero, I. Pegoretti, A. Passerini, E. Blanzieri, and A. Quattrone, “Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells,” BMC genomics, vol. 13, p. 220, 2012.
    [22] M. Teng, M. I. Love, C. A. Davis, S. Djebali, A. Dobin, B. R. Graveley, S. Li, C. E. Mason, S. Olson, D. Pervouchine, C. A. Sloan, X. Wei, L. Zhan, and R. A. Irizarry, “A benchmark for RNA-seq quantification pipelines,” Genome biology, vol. 17, no. 1, p. 74, 2016.
    [23] S. R. Thompson, “So you want to know if your message has an IRES,” Wiley interdisciplinary reviews. RNA, vol. 3, no. 5, pp. 697-705, 2012.
    [24] J. Wan, and S. B. Qian, “TISdb: a database for alternative translation initiation in mammalian cells,” Nucleic acids research, vol. 42, pp. D845-D850, 2014.
    [25] Y. Ye, Y. Liang, Q. Yu, L. Hu, H. Li, Z. Zhang, and X. Xu, “Analysis of human upstream open reading frames and impact on gene expression,” Human genetics, vol. 134, no. 6, pp. 605-612, 2015.

    無法下載圖示 校內:2020-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE