簡易檢索 / 詳目顯示

研究生: 叢主新
Tsung, Chu-Hsin
論文名稱: Mason model程式化與其在FBAR元件輔助設計中的應用
Programmatic Implementation of the Mason Model and Its Application in Assisting the Design of FBAR Devices
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 111
中文關鍵詞: FBAR程式化程式輔助設計Mason model縱向模態橫向模態
外文關鍵詞: FBAR , Mason model, Programmatic Implementation, TE mode, Spurious modes
相關次數: 點閱:178下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在將FBAR元件的設計過程加速,以節省時間和成本。目前設計FBAR的過程需要不斷調整參數並進行實作,而缺乏充分的理論計算支持使得這個過程非常耗時耗成本。為了解決這個問題,本研究結合聲波傳播方程式以及壓電方程式,推導出Mason model,然後將Mason模型使用程式語言C++進行程式化,利用電腦運算數學表達式並代入材料參數,快速計算FBAR的特性結果,並比對ADS模擬軟體的模擬結果,驗證出本研究之程式碼可精準模擬FBAR特性。首先,只考慮壓電層所帶來的影響,接著,增加上下電極並更改上下電極厚度,發現當厚度增加時諧振頻率下降,品質因數也隨之下降,最終,增加支撐層並更改支撐層厚度,同樣地,當支撐層厚度增加時諧振頻率以及品質因數下降。且本研究考慮了聲波損耗的影響,諧振頻率並不會因為黏滯係數逐漸增加而受影響,但諧振特性和品質因數會因為黏滯係數的增加而下降。本研究中還包括探討聲波在其他因素影響下可能產生的垂直C軸方向行進的雜散模態。透過整理相關的理論和公式,建立橫向模態分析的Mason模型,用以研究在縱向模態下所產產生的橫向剪切波對FBAR的影響,一般將其視為雜散模態,其結果顯示雜散模態之高次諧波可能出現在靠近縱向模態中的諧振頻率點附近,而雜散模態會在縱向模態的頻率響應中產生的雜散不規則性可能導致設備性能的惡化。本研究的成果將為FBAR技術的發展提供理論支持,並為實驗和實際應用提供更多的協助。

    This research aims to expedite FBAR design, saving time and costs. It combines acoustic and piezoelectric equations to derive the Mason model, implemented in C++. Material parameters are used for rapid FBAR characteristic calculations, validated against ADS simulations. Thickness variations of the piezoelectric layer, top/bottom electrodes, and supporting layer impact resonance frequency and quality factor. Acoustic wave losses affect resonance characteristics and quality factor. The study investigates spurious modes, revealing their potential impact on longitudinal mode responses. The research provides theoretical support for FBAR technology advancement and practical applications.

    摘要 i 目錄 xi 圖目錄 xv 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與方法 4 第二章 FBAR基本理論 6 2-1 結構與材料 6 2-2 固體聲學 9 2-2-1 應變與應力 9 2-2-2 聲波阻抗 13 2-2-3 縱向波與橫向剪切波 16 2-3 聲波損耗及性能參數 17 2-3-1 聲波損耗 17 2-4 壓電與諧振原理 21 2-4-1 壓電效應 21 2-4-2 壓電方程式 21 2-4-3 壓電耦合係數 22 2-4-4 諧振原理與諧振模態 24 第三章 縱向模態分析 26 3-1 基本等校理論 26 3-1-1 聲波電路等效模型 26 3-1-2 壓電耦合電路模型 29 3-1-3 多層電路模型 34 3-1-4 有損耗多層電路模型 36 3-1-5 品質因數 39 3-2 Mason model程式化 40 3-2-1 Main程式碼 40 3-2-2 MasonCrkElm程式碼 46 3-3 安裝及執行方式 61 3-3-1 Mingw64 61 3-3-2 Python 64 3-3-3 執行 64 3-4 應用 68 3-4-1 單層壓電層之諧振特性分析 69 3-4-2 包含上下電極之三層結構諧振特性分析 74 3-4-3 增加支撐層之四層結構諧振特性分析 79 3-4-4 有損單層結構之諧振特性分析 83 3-4-5 有損三層結構之諧振特性分析 87 3-4-6 有損四層結構之諧振特性分析 88 3-4-7 結論 90 第四章 橫向模態與雜散模態分析 91 4-1 基本理論 91 4-1-1 定義 91 4-2 FBAR裡的橫向模態 93 4-2-1 分析方法 93 4-2-2 諧振頻率與反諧振頻率 93 4-2-3 程式化 96 4-3 應用 102 4-3-1 建立輸入檔 102 4-3-2 執行結果與對比 103 第五章 結論與未來展望 106 5-1 結論 106 5-2 未來方向 107 參考文獻 109

    [1] Wikipedia. "5G." https://en.wikipedia.org/w/index.php?title=5G&oldid=1158495464 (accessed 8 June 2023
    [2] Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, "Materials, design, and characteristics of bulk acoustic wave resonator: A review," Micromachines, vol. 11, no. 7, p. 630, 2020.
    [3] S. Mahon, "The 5G effect on RF filter technologies," IEEE Transactions on Semiconductor Manufacturing, vol. 30, no. 4, pp. 494-499, 2017.
    [4] R. Aigner, "SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses," in 2008 IEEE Ultrasonics Symposium, 2008: IEEE, pp. 582-589.
    [5] Y. Satoh, T. Nishihara, T. Yokoyama, M. Ueda, and T. Miyashita, "Development of piezoelectric thin film resonator and its impact on future wireless communication systems," Japanese journal of applied physics, vol. 44, no. 5R, p. 2883, 2005.
    [6] S.-H. Lee, K. H. Yoon, and J.-K. Lee, "Influence of electrode configurations on the quality factor and piezoelectric coupling constant of solidly mounted bulk acoustic wave resonators," Journal of Applied Physics, vol. 92, no. 7, pp. 4062-4069, 2002.
    [7] R. Ruby, "11E-2 review and comparison of bulk acoustic wave FBAR, SMR technology," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 1029-1040.
    [8] K. Leong and J. Mazierska, "Precise measurements of the Q factor of dielectric resonators in the transmission mode-accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance," IEEE transactions on microwave theory and techniques, vol. 50, no. 9, pp. 2115-2127, 2002.
    [9] R. Ruby, J. Larson, C. Feng, and S. Fazzio, "The effect of perimeter geometry on FBAR resonator electrical performance," in IEEE MTT-S International Microwave Symposium Digest, 2005., 2005: IEEE, pp. 217-220.
    [10] K.-W. Tay, C.-L. Huang, and L. Wu, "Influence of piezoelectric film and electrode materials on film bulk acoustic-wave resonator characteristics," Japanese journal of applied physics, vol. 43, no. 3R, p. 1122, 2004.
    [11] M. Link, "Study and realization of shear wave mode solidly mounted film bulk acoustic resonators (FBAR) made of c-axis inclined zinc oxide (ZnO) thin films: application as gravimetric sensors in liquid environments," Université Henri Poincaré-Nancy I, 2006.
    [12] 張亞非 and 陳達, 薄膜體聲波諧振器的原理、設計與應用. 上海交通大學出版社, 2011.
    [13] L. Xu, X. Wu, and Y. Zeng, "Simulation and Research of Piezoelectric Film Bulk Acoustic Resonator Based on Mason Model," presented at the The 6th International Conference on Integrated Circuits and Microsystems, 2021.
    [14] K. M. Lakin, "Thin film resonators and filters," in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027), 1999, vol. 2: IEEE, pp. 895-906.
    [15] Q.-X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, "Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 4, pp. 769-778, 2001.
    [16] H. Campanella, "Tunable FBARs: Frequency tuning mechanisms," in The 40th European Microwave Conference, 2010: IEEE, pp. 795-798.
    [17] S. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, and R. Moore, "Film bulk acoustic wave resonator technology," in IEEE Symposium on Ultrasonics, 1990: IEEE, pp. 529-536.
    [18] Y. Kumar, J. Singh, G. Kumari, R. Singh, and J. Akhtar, "Effect of shapes and electrode material on figure of merit (FOM) of BAW resonator," in AIP Conference Proceedings, 2016, vol. 1724, no. 1: AIP Publishing LLC, p. 020045.
    [19] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. 685 Canton Street Norwood, MA 02062: ARTECH HOUSE, INC, 1988, p. 459.
    [20] "Acoustic impedance," Lippincott Williams & Wilkins, 2009.
    [21] Y. Kobayashi, N. Tanaka, H. Okano, K. Takeuchi, T. Usuki, and K. S. K. Shibata, "Characteristics of surface acoustic wave on AlN thin films," Japanese journal of applied physics, vol. 34, no. 5S, p. 2668, 1995.
    [22] J. Sunday, "Systems Theory: An Approach to Mass-Damper-Spring and Mass-Nondamper-Spring Systems," General Letters in Mathematics (GLM), vol. 3, no. 3, 2017.
    [23] W. P. Mason, "Phonon viscosity and its effect on acoustic wave attenuation and dislocation motion," The Journal of the Acoustical Society of America, vol. 32, no. 4, pp. 458-472, 1960.
    [24] H. Zhang and E. S. Kim, "Micromachined acoustic resonant mass sensor," Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 699-706, 2005.
    [25] W. Pang, H. Zhang, H. Yu, and E. S. Kim, "Analytical and experimental study on second harmonic response of FBAR for oscillator applications above 2GHz," in IEEE Ultrasonics Symposium, 2005., 2005, vol. 4: IEEE, pp. 2136-2139.
    [26] P. Dineva et al., Piezoelectric materials. Springer, 2014.
    [27] R. G. Polcawich and J. S. Pulskamp, "Additive processes for piezoelectric materials: Piezoelectric MEMS," MEMS materials and Processes Handbook, pp. 273-353, 2011.
    [28] L. Qin, Q. Chen, H. Cheng, and Q.-M. Wang, "Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 8, pp. 1840-1853, 2010.
    [29] Microwaves101. "Aluminum Nitride." https://www.microwaves101.com/encyclopedias/aluminum-nitride (accessed 7/7, 2023).
    [30] D. A. Feld, R. Parker, R. Ruby, P. Bradley, and S. Dong, "After 60 years: A new formula for computing quality factor is warranted," in 2008 IEEE Ultrasonics Symposium, 2008: IEEE, pp. 431-436.
    [31] D. Rosén, J. Bjurstrom, and I. Katardjiev, "Suppression of spurious lateral modes in thickness-excited FBAR resonators," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 7, pp. 1189-1192, 2005.

    無法下載圖示 校內:立即公開
    校外:2028-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE