簡易檢索 / 詳目顯示

研究生: 黃明詳
Huang, Ming-Shiang
論文名稱: 場規劃邏輯閘陣列於全數位化單相功率因數修正器之實現
Hardware Realization of Digital Single-Phase Power Factor Corrector via Field Programmable Gate Array
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 99
中文關鍵詞: 場規劃邏輯閘陣列功率因數修正器
外文關鍵詞: Field Programmable Gate Array, Power Factor Corrector
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用場規畫邏輯閘陣列(Field Programmable Gate Array; FPGA)於數位單相功率因數修正器之研製。文中所設計的功因修正器係將類比控制電路製作成數位IC,並使用分散式算術演算法以大幅減少FPGA內部邏輯方塊的需求,及降低控制電路成本。另本文在輸出電壓取樣方面,採用電壓零點取樣法,使輸出電壓側產生一虛擬凹陷式濾波器的功能,以替代原有之低通濾波器,因而使得負載在激烈的變動下,仍能快速將輸出電壓穩定控制在設定值。本文由數位模擬結果與硬體電路實作,證實依本文所提之方法在功因修正器之研製上、確實具有提高功因與降低成本及快速穩定輸出電壓之功能。

    In this thesis, the implementation of single-phase power factor corrector has been effectively achieved with the aid of field programmable gate array (FPGA). By using the distributed arithmetic method, the number of configurable logic cells inside the FPGA can be reduced, facilitating the reduction of development cost. Besides, for the issue of output voltage sampling, a zero-point voltage sampling approach has been adopted in this thesis. With this strategy, the output voltage side can generate a equivalently virtual notch filter in order to replace the low-pass filter while the voltage can be thus better maintained at the predetermined value along with a fast response even under a drastic load variation. This proposed method has been validated through the software simulations and hardware implementation. Test results solidify the feasibility of the proposed method in both power factor improvement and voltage stabilization.

    中文摘要I 英文摘要II 誌謝III 目錄VI 表目錄VII 圖目錄XI 符號說明Ⅶ 第一章緒論1 1-1 研究背景與動機1 1-2 目的及方法3 1-3 內容大綱3 第二章功因修正器相關理論5 2-1 簡介5 2-2 功率因數定義5 2-3 功因修正器種類8 2-3-1 被動式功因修正器8 2-3-2 主動式功因修正器10 2-4 功因修正器控制系統17 2-5 直流電壓漣波對系統控制之影響21 2-6 數位控制器分析23 第三章硬體架構27 3-1 簡介27 3-2 可程式邏輯閘之簡介28 3-3 主系統電路35 3-3-1 升壓式電能轉換器之電路架構35 3-3-2 截止緩震電路37 3-2-3 驅動電路38 3-4 數位電路40 3-4-1 類比/數位轉換器控制器42 3-4-2 數位/類比轉換器控制器46 3-4-3 數位鎖相迴路50 3-4-4 2 補數乘法器52 3-4-5 數位比例積分控制器56 3-4-6 數位保護模組59 3-4-7 脈波寬度調變器62 3-5 類比電路65 3-5-1 隔離迴授電路66 3-5-2 過電壓與過電流保護電路68 3-6 功因修正器模擬結果69 第四章實驗結果73 4-1 簡介73 4-2 現場可規化邏輯閘使用率74 4-3 輕載測試79 4-4 加載時測試82 4-5 使用低通濾波器與使用數位取樣法比較85 第五章結論與未來研究方向88 5-1 結論88 5-2 未來研究方向88 參考文獻90 附錄96 作者簡介99 表2-1 主動式與被動式功因修正器的比較8 表3-1 Spartan 系列產品30 表3-2 SpartanⅡ系列相關型號及其內部組織表31 表3-3 TLP250 動作真值表39 表3-4 AD7874 佈線結果45 表3-5 AD7249 相關腳位定義46 表3-6 AD7249 佈線結果49 表3-7 鎖相迴路佈線結果52 表3-8 2’s 乘法器記算結果54 表3-9 2 補數乘法器佈線結果55 表3-10 比例積分控制器計算結果58 表3-11 比例積分控制器佈線結果59 表3-12 比例積分控制器佈線結果62 表3-13 脈波寬度調變器佈線結果65 表4-1 功因修正器之硬體參數74 表4-2 佈線結果75 圖1-1 傳統功因修正器2 圖2-1 電壓與電流相移圖7 圖2-2 傳統被動式功因修正器9 圖2-3 改良式被動型功率因數修正器10 圖2-4 升壓式主動功因修正器11 圖2-5 連續導通模式12 圖2-6 不連續導通模式13 圖2-7 臨界導通模式16 圖2-8 升壓式電能轉換器17 圖2-9 開關電壓與電感電壓向量圖18 圖2-10 基本電流控制迴路19 圖2-11 完整功因修正器控制方塊圖20 圖2-12 數位系統的不連續信號取樣示意圖23 圖2-13 類比電路控制圖24 圖2-14 數位系統控制參數25 圖3-1 功因修正器硬體架構圖28 圖3-2 現場可規劃邏輯閘陣列內部概略圖32 圖3-3 CLB 內部電路圖34 圖3-4 主要電力電路架構圖35 圖3-5 升壓式電能轉換器導通截止狀態圖36 圖3-6 截止緩衝電路37 圖3-7 截止緩衝電路暫態電路38 圖3-8 TLP250 架構圖40 圖3-9 驅動電路圖40 圖3-10 FPGA 內部的計算流程41 圖3-11 AD7874 簡圖43 圖3-12 AD7874 控制流程圖44 圖3-13 AD7874 模擬時序圖44 圖3-14 AD7874 佈線圖45 圖3-15 AD7249 架構圖47 圖3-16 AD7249 控制流程圖48 圖3-17 AD7249 模擬時序圖48 圖3-18 AD7249 佈線圖49 圖3-19 數位鎖相迴路的架構圖51 圖3-20 數位鎖相迴路時序圖51 圖3-21 鎖相迴路佈線圖52 圖3-22 由內部合成的乘法器輸出結果53 圖3-23 2 補數的運算法則54 圖3-24 2’補數乘法器模擬圖55 圖3-25 2 補數乘法器佈線圖55 圖3-26 分散式算數方塊圖57 圖3-27 實際模組58 圖3-28 比例積分時序圖58 圖3-29 比例積分控制器佈線圖59 圖3-30 系統容許的工作區域與不正常工作區域60 圖3-31 數位保護模組簡圖61 圖3-32 數位保護模組時序圖61 圖3-33 數位保護模組佈線圖61 圖3-34 脈波寬度調變的原理63 圖3-35 脈波寬度調變器方塊圖64 圖3-36 脈波寬度調變器之模擬圖64 圖3-37 脈波寬度調變器佈線圖65 圖3-38 類比電路區塊圖66 圖3-39 隔離迴授電路示意圖67 圖3-40 霍爾CT 67 圖3-41 保護電路示意圖68 圖3-42 負載在10%時之輸入電壓、輸入電流與輸出電壓70 圖3-43 負載在100%時之輸入電壓、輸入電流與輸出電壓71 圖3-44 使用數位取樣後的迴授電壓71 圖3-45 使用低通濾波器時,負載由10%瞬間加至100% 72 圖3-46 使用數位取樣方法時,負載由10%瞬間加至100% 72 圖4-1 實作硬體電路架構圖73 圖4-2 完整控制器之佈線圖74 圖4-3 AD7874 控制信號實測圖77 圖4-4 AD7249 控制信號實測圖77 圖4-5 數位鎖相實測圖78 圖4-6 數位脈波頻寬調變器實測圖78 圖4-7 2 補數乘法實測圖79 圖4-8 輕載下控制器尚未啟動80 圖4-9 輕載下控制器尚未啟動80 圖4-10 輕載下控制器啟動後,輸入端市電電壓與輸入電流81 圖4-11 輕載下控制器啟動後,輸入端市電電壓與輸出電壓81 圖4-12 重載下控制器尚未啟動,輸入端市電電壓與輸入電流83 圖4-13 重載下控制器尚未啟動,輸入端市電電壓與輸出電壓83 圖4-14 重載下控制器啟動後,輸入端市電電壓與輸入電流84 圖4-15 重載下控制器啟動後,輸入端市電電壓與輸出電壓流84 圖4-16 功率因數與負載功率條狀圖85 圖4-17 諧波百分比與負載功率條狀圖85 圖4-16 使用低通濾波器時,負載由無載瞬加至滿載86 圖4-17 使用數位取樣法,負載由無載瞬間加至滿載87

    [1] Q. Zhao, F. Tao, P. Xu, J. Wei and F. C. Lee, “Improving performance of continuous current mode boost converters for power factor correction,” Proceedings of Power Electronics Specialists Conference, Vancouver, Canada, June 2001, pp. 642-647.

    [2] C. K. Tse and M. H. L. Chow, “Theoretical study of switching power converters with power factor correction and output regulation,” IEEE Transactions on Circuits and Systems, Vol. 47, No. 7, July 2000, pp. 1047-1055.

    [3] N. P. Papanikolaou and C. E. Tatakis, “Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode,” IEE Proceedings- Electric Power Applications, Vol. 149, No. 4, July 2002, pp 283-291.

    [4] Q. Zhao, F. Tao, F. C. Li, P. Xu and J. Wei, “A simple and effective method to alleviate the rectifier reverse-recovery problem in continuous-current-mode boost converters,” IEEE Transactions on Power Electronics, Vol. 16, No. 5, September 2001, pp. 649-658.

    [5] M. H. L, Chow, K.W. Siu, C.K. Tse and Y. S. Lee, “A novel method for elimination of line-current harmonics in single-stage PFC switching regulators,” IEEE Transactions on Power Electronics, Vol. 13, No. 1, January 1998, pp. 75-83.

    [6] Y. K. E. Ho, S. T. R. Hui and Y. S. Lee, “Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters,” IEEE Transactions on Power Electronics, Vol. 15, No. 1, January 2000, pp. 62-71.

    [7] C. S. Moo, H. C. Yen, Y. C. Hsieh and Y. C. Chuang, “Integrated design of EMI filter and PFC low-pass filter for power electronic converters,” IEE Proceedings- Electric Power Applications, Vol. 150, No. 1, January 2003, pp. 39-44.

    [8] V. Grigore, J. Kyyra and J. Bajamaki, “Input filter design for power factor correction converters operating in discontinuous conduction mode,” 1999 IEEE International Symposium on Electromagnetic Compatibility, Seattle, WA , USA, August 1999.Vol. 1, pp. 145-150.

    [9] A. C. Wang and S. R. Sanders, “Programmed pulsewidth modulated waveforms for electromagnetic interference mitigation in DC-DC converters,” IEEE Transactions on Power Electronics, Vol. 8, No. 4, October 1993, pp. 596-605.

    [10] M. Vilathgamuwa, J. Deng and K. J. Tseng, “EMI suppression with switching frequency modulated DC-DC converters,” IEEE Industry Applications Magazine ,Vol. 5, No. 6, November/December 1999, pp. 27-33.

    [11] J. Qian and F. C. Y. Lee, “A high-efficiency single-stage single-switch high-power-factor AC/DC converter with universal input,” IEEE Transactions on Power Electronics, Vol. 13, No. 4, July 1998, pp. 699-705.

    [12] Z. Lai and K. M. Smedley, “A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator, ” IEEE Transactions on Power Electronics, Vol. 13, No. 3, May 1998, pp. 501-510.

    [13] J. Rajagopalan, F. C. Lee and P. Nora, “A general technique for derivation of average current mode control laws for single-phase power-factor-correction circuits without input voltage sensing,” IEEE Transactions on Power Electronics, Vol.14, No. 4, July 1999, pp. 663-672.

    [14] M. Magao, “A novel one-stage forward-type power-factor-correction circuit,” IEEE Transactions on Power Electronics, Vol. 15, No. 1, January 2000, pp. 103-110.

    [15] J. Hahn, P. N. Enjeti and I. J. Pitel, “A new three-phase power factor correction (PFC) scheme using two single-phase PFC modules,” IEEE Transactions on Industry Applications, Vol. 38, No. 1, June 2002, pp. 123-130.

    [16] M. Qiu, G. Moschopoulos, H. Pinheriro and P. Jain, “A PWM full-bridge converter with natural input power factor correction,” 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka , Japan, pp. 1605-1611.

    [17] P. J. Villegas, J. Sebastian, M. M. Hernando, F. Nuno and J. A. Martinze, “Average current mode control of series-switched post-regulators used in power factor correctors, ” 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka , Japan, pp. 1808-1814.

    [18] L. Ping, M. Yu, K. Yong, Z. Hui and C. Jian, “Analysis of single-phase boost power factor correction (PFC) converter,” Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, Hong Kong, pp. 933-937.

    [19] D. Xu, J. Zhang, W. Chen, J. Lin and F. C. Lee, “Evaluation of output filter capacitor current ripples in single phase PFC converters, ” Proceedings of the Power Conversion Conference, Osaka, Japan, April 2002, pp. 1226-1231.

    [20] S. L. Jung, M. Y. Chang, J. Y. Jyang, H. S. Huang, L. C. Yeh and Y. Y. Tzou, “Design and implementation of an FPGA-based control IC for the single-phase PWM inverter used in an UPS,” 1997 International Conference on Power Electronics and Drive Systems, Singapore, May 1997, pp. 344-349.

    [21] S. L. Jung, M. Y. Chang, J. Y. Jyang L. C. Yeh and Y. Y. Tzou, “Design and implementation of an FPGA-based control IC for AC-voltage regulation,” IEEE Transactions on Power Electronics, Vol. 14, No. 3, May 1999, pp. 522-532.

    [22] S. L. Jung, M. Y. Chang, J. Y. Jyang, H. S. Huang, L. C. Yeh and Y. Y. Tzou, “Design and implementation of an FPGA-based control IC for the single-phase PWM inverter used in an UPS,” International Conference on Power Electronics and Drive Systems, Singapore, May 1997, pp. 344-349.

    [23] N. Mohan, T. M. Undeland and W. P. Robbings, Power electronics converter applications and design, JOHN WILEY & SONG, INC., New York, USA, 1995.

    [24] 梁適安, “交換式電源供給器之理論與實務設計,” 全華科技圖書股份有限公司, 民國90年.

    [25] P. N. Wood, “Flourescent ballast design using passive PFC and crest factor control,” The 1998 IEEE Industry Applications Conference, St. Louis, MO, USA, October 1998, pp. 2076-2081.

    [26] R. Zhang and F. Z. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” Twelfth Annual Applied Power Electronics Conference and Exposition, Atlanta, GA , USA, February 1997, pp. 895-901.

    [27] J. C. Crebier, P. Barbosa, F. Canales, F. C. Lee and J. P. Ferrieux, “Frequency domain analysis and evaluation of differential mode input current for three-phase DCM boost rectifiers with different control strategies,” 2000 IEEE 31st Annual Power Electronics Specialists Conference, June 2000, pp. 482-487.

    [28] B. R. Lin and H. H. Lu, “Single-phase power-factor-correction AC/DC converters with three PWM control schemes,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 1, January 2000, pp. 189-200.

    [29] Y. Qin and S. Du, “A novel adaptive hysteresis band current control using a DSP for a power factor corrected on-line UPS,” New Orleans, LA , USA, November 1997, pp. 208-212.

    [30] A. Hirota, S. Nagai, M. A. AI, M. Rukonuzzaman and Nakaoka, “A novel hysteresis current control scheme for single switch type single phase PFC converter,” Proceedings of the Power Conversion Conference, Osaka, Japan, April 2002, pp. 1223-1225.

    [31] B. R. Lin, D. P. Wu and T. F. Shiue, “Three-phase PFC with space vector and hysteresis control methods,” 1997 International Conference on Power Electronics and Drive Systems, Singapore, May 1997, pp. 48-52.

    [32] C. Zhou, R. B. Ridley and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” 21st Annual IEEE Power Electronics Specialists Conference, San Antonio, TX, USA, June 1990, pp. 800-807.

    [33] R. Wu, S. B. Dewan and G. R. Slemon, “A PWM AC-to-DC converter with fixed switching frequency,” IEEE Transactions on Industry Applications, Vol. 26, No. 5, September/October 1990, pp. 880-885.

    [34] J. M. S. Kim, P. Shankar and W. Zhang, “Analysis of predictive control for active power factor correction,” 20th International Conference on Industrial Electronics, Bologna, Italy, September 1994, pp. 446-451.

    [35] P. Ninkovic and Z. Janda, “Minimum Settling Time Voltage Regulation of Single-Phase PFC Converters,” The 8th IEEE International Conference on Electronics, Circuits and Systems, Spain, September 2001, pp. 149-152.

    [36] J. Zhou, Z. Lu, Z. Lin, Y. Ren, Z. Qian and Y. Wang, “Novel Sampling Algorithm for DSP Controlled 2 kW PFC Converter,” IEEE Transactions on Power Electronics, Vol. 16, No. 2, March 2001, pp. 217-222.

    [37] http://direct.xilinx.com/bvdocs/publications/ds001_1.pdf

    [38] http://direct.xilinx.com/bvdocs/publications/ds001_2.pdf

    [39] http://direct.xilinx.com/bvdocs/publications/ds001_3.pdf

    [40] http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Spartan-II

    [41] H. C. Karathanasis, “A Low ROM Distributed Arithmetic Implementation of the Forward/Inverse DCT/DST Using Rotations,” IEEE Transactions on Consumer Electronics, Vol. 41, No. 2, May 1995, pp.263-272.

    [42] G. Martinelli, R. L. Prina, and S. Ragazzini, “Distributed Arithmetic Perceptron,” IEE Proceedings- Circuit, Devices and Systems, Vol.141, No. 5, October 1994, pp. 382-386.

    [43] V. Bochev, “Distributed Arithmetic Implementation of Artificial Neural Networks,” IEEE Transactions on Signal Processing, Vol. 41, No. 5, May 1993, pp. 2010-2013.

    [44] A. Berkeman, V. Owall and M. Torkelson, “A low logic depth complex multiplier using distributed arithmetic,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 4, April 2000, pp. 656-659.

    無法下載圖示 校內:2103-07-08公開
    校外:2103-07-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE