簡易檢索 / 詳目顯示

研究生: 葉人瑋
Ye, Ren-Wei
論文名稱: 介電陶瓷基板材料???.?????.?????? 與???−???????? 之研發與帶通濾波器之應用暨共振頻率溫度飄移係數調整必要性之探討
Study on Dielectric Ceramic Materials of ???.?????.?????? and ???−???????? and Application to Bandpass Filters and Exploration on the Necessity of Adjusting Temperature Coefficient of Resonant Frequency
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 140
中文關鍵詞: 介電陶瓷基板材料Zn1.95Co0.05SiO4Zn2−?Cu?SiO4?? 調整必要性基板濾波器
外文關鍵詞: dielectric ceramic material, Zn1.95Co0.05SiO4, Zn2−?Cu?SiO4, temperature coefficient of resonant frequency adjustment necessity, filter
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 介電陶瓷基板因其機械應力強、頻率應用範圍廣、承受功率大等優點,廣泛應用於許多通訊設備中,隨著通訊技術的發展,對作爲通訊設備關鍵材料的介質陶瓷性能參數有更高的要求,即特低的介電損失(Q×f 值>100,000GHz)、低介電常數(5< εr<15)及趨近於零的共振頻率溫度飄移係數(τf)。根據許多研究結果顯示,為了調整τf值會使Q×f 值下降,但並未探討τf值對訊號飄移影響的多寡,故本研究將會對τ_f值和基板濾波器之關係進行理論模擬計算,探討τf值對訊號飄移的影響,首先,根據理論公式計算εr與溫度關係,再將已知參數 εr、tanδ 輸入至模擬軟體進行濾波器特性模擬,根據研究結果得知需進行τ_f調整之臨界值為-266 ppm/℃,常見陶瓷材料之τf值皆高於此臨界值,故避免在調整過程當中所造成的Q×f 值降低,認為τf值沒有調整的必要性。為了符合低介電常數、高Q值的需求,開始尋找有潛力之材料,最後選擇Zn2SiO4,因其燒結溫度相較其他潛力材料較低,而本研究選用Zn2SiO4並加以改良使其有更高Q×f 值之表現,以降低作為濾波器時的能量損耗。分別採用CoO、CuO 微量取代 ZnO製作Zn_1.95 Co_0.05 SiO_4、〖 Zn〗_(2-x) Cu_x SiO_(4 )材料,Zn_1.95 Co_0.05 SiO_4、〖 Zn〗_(2-x) Cu_x SiO_(4 )皆使用固相燒結法製作,經由實驗結果發現〖 Zn〗_1.95 Co_0.05 SiO_4(ZCS)在燒結溫度為1375℃ 持溫6小時有最佳微波介電特性,ZCS的Q×f 值為140,400 GHz、〖 ε〗_r為6.865、τ_f 值為-19 ppm/℃,並與文獻使用反應燒結法製作的ZCS比較微波介電特性與製作成本,發現Q×f 值低約85,000 GHz,可能原因為燒結方式、粉末原料、實驗環境不同所導致,但仍符合本研究設定之目標Q×f 值大於100,000GHz。在符合研究設定之目標Q×f 值下,經由EDS分析確認CuO不僅可以降低燒結溫度,其Cu^(2+)還可以取代Zn2SiO4中的Zn^(2+)。本研究製作成本較文獻低約2.5倍,而〖 Zn〗_(2-x) Cu_x SiO_(4 )(ZCuS)在比例 x=0.08、且燒結溫度1150℃ 持溫4小時有最佳微波介電特性,ZCuS的Q×f 值為100,400 GHz、εr為6.79、τf 值為-28 ppm/℃,同樣符合本研究設定之目標Q×f 值,ZCuS與本研究製作之ZCS比較,具有最佳燒結溫度低225℃、燒結持溫時間少2小時、製作成本低約5.68倍等優點。最後以Al2O3、ZCS、ZCuS設計及製作中心頻率為3.5 GHz之基板帶通濾波器,經由量測結果發現在符合本研究設定之目標插入損耗小於3dB下,考量製作時間及價錢成本選擇ZCuS為當中製作濾波器最佳的微波介電陶瓷基板材料。

    To meet the requirements of low dielectric constant and high Q value, the search for potential materials was initiated, and Zn2SiO4 was ultimately chosen. It has a lower sintering temperature compared to other potential materials. In this study, Zn2SiO4 was selected and modified to achieve higher Q×f performance. Zn1.95 Co0.05SiO4 and Zn(2-x)CuxSiO4 materials were prepared by substituting a small amount of ZnO with CoO and CuO, respectively. Both Zn1.95Co0.05SiO4 and Zn(2-xCuxSiO4 were fabricated using the solid-state sintering. Experimental results showed that Zn1.95Co0.05SiO4 (ZCS) exhibited the best microwave dielectric properties when sintered at a temperature of 1375°C for 6 hours. ZCS had a Q×f = 140,400 GHz and εr = 6.865 and τf = -19 ppm/°C. A comparison was made between ZCS produced in this study and ZCS produced using reaction-sintering process in the literature in terms of microwave dielectric properties and cost. It was found that the Q×f value was lower by 85,000 GHz, possibly due to different sintering methods, powder materials, and experimental environments. However, it still met this study’s target Q×f value, and the cost was approximately 2.5 times lower than the literature. For Zn2-xCuxSiO4 (ZCuS) with a ratio of x = 0.08 and a sintering temperature of 1150°C with a 4-hour holding time, it exhibited best microwave dielectric properties. ZCuS had a Q×f = 100,400 GHz, εr = 6.79, and τf = -28 ppm/°C, also meeting the target Q×f value of this study. Compared to ZCS produced in this study, ZCuS had advantages such as a lower best sintering temperature by 225°C and cost approximately 5.68 times lower. Finally, a ZCS and ZCuS substrate bandpass filter with a center frequency of 3.5 GHz was designed and fabricated. Both filters exhibit a center frequency of 3.5GHz, reflection loss >10dB, insertion loss < 3dB, and a bandwidth ratio > 3.5%, all of which meet the application requirements for 3.5GHz filters.

    摘要 I 誌謝 XIII 目錄 XIV 表目錄 XX 圖目錄 XXII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的與方法 5 第二章 介電陶瓷材料相關理論 8 2-1 介電陶瓷材料 8 2-2 介電原理 8 2-3 影響介電陶瓷材料特性之因素 12 2-3-1 相對介電常數(εr) 12 2-3-2 品質因數(Q) 13 2-3-3 介電常數頻率溫度飄移係數(τε)與共振頻率溫度飄移係數(τf) 15 2-4 介電陶瓷材料製作 16 2-4-1 固態反應法(Solid-state method) 16 2-4-2 介電陶瓷材料燒結原理 17 2-4-3 介電材料燒結種類 19 2-5 介電陶瓷材料微波特性 20 2-5-1 常見介電陶瓷 Al2O3 及 MgTiO3 20 2-5-2 Zn2SiO4 21 2-5-3 添加CuO之相關文獻 25 2-6 陶瓷基板與陶瓷介電共振器 28 第三章 濾波器與微帶線相關理論 31 3-1 濾波器原理 31 3-1-1 濾波器簡介 31 3-1-2 濾波器種類 31 3-1-3 濾波器頻率響應種類 32 3-1-4 濾波器微波特性參數 33 3-2 微帶線原理 34 3-2-1 微帶傳輸線簡介 34 3-2-2 微帶線之傳輸模態 35 3-2-3 微帶線之各項參數公式計算及考量 36 3-2-4 微帶線之不連續效應 38 3-3 微帶線共振器種類 40 3-3-1 λ/4 短路微帶線共振器 40 3-3-2 λ/2 開路微帶線共振器 41 3-4 耦合理論 42 3-4-1 耦合係數 42 3-4-2 電場耦合 42 3-4-3 磁場耦合 45 3-4-4 混合耦合 47 3-4-5 影響耦合係數的參數 49 3-5 λ /4 阻抗轉換器與開路殘斷 50 3-6 微帶線濾波器設計 51 第四章 實驗方法與規劃 53 4-1 粉體原料 53 4-2 固態反應法與陶瓷體之製作 53 4-2-1 粉體製作 55 4-2-2 塊體製作 56 4-3 實驗量測 57 4-3-1 XRD量測 57 4-3-2 SEM量測 60 4-3-3 EDS量測 61 4-3-4 視密度量測 62 4-3-5 微波介電特性量測 63 4-3-6 共振頻率溫度飄移係數量測 67 4-4 濾波器設計、模擬、實作與量測 67 4-4-1 濾波器電路參數設計分析 67 4-4-2 濾波器之模擬分析設計 72 4-4-3 濾波器之實作 75 4-4-4 濾波器之量測與誤差 76 4-5 實驗規劃 78 4-5-1 共振頻率溫度飄移係數和基板濾波器之關係計算 78 4-5-2 固相燒結法 Zn1.95Co0.05SiO4 之微波介電特性 78 4-5-3 固相燒結法 Zn2-xCuxSiO4 之微波介電特性 79 4-5-4 製作濾波器並量測不同材料下之特性變化 80 第五章 實驗結果與討論 81 5-1 共振頻率溫度飄移係數和基板濾波器之關係計算 81 5-1-1 計算εr值與溫度之關係 81 5-1-2 模擬三種不同設計結構帶通濾波器之特性結果 83 5-1-3 計算τf臨界值 96 5-1-4 總結 97 5-2 Zn1.95Co0.05SiO4 之特性探討 98 5-2-1 Zn1.95Co0.05SiO4之XRD分析 98 5-2-2 Zn1.95Co0.05SiO4之視密度分析 100 5-2-3 Zn1.95Co0.05SiO4之SEM分析 101 5-2-4 Zn1.95Co0.05SiO4之 Q×f 值分析 104 5-2-5 Zn1.95Co0.05SiO4之相對介電常數分析 106 5-2-6 Zn1.95Co0.05SiO4之共振頻率溫度飄移係數分析 106 5-2-7 總結 107 5-3 Zn2-xCuxSiO4之特性探討 109 5-3-1 Zn2-xCuxSiO4之視密度分析 109 5-3-2 Zn2-xCuxSiO4之XRD分析 111 5-3-3 Zn2-xCuxSiO4之SEM分析 113 5-3-4 Zn2-xCuxSiO4之EDS分析 115 5-3-5 Zn2-xCuxSiO4之 Q×f 值分析 117 5-3-6 Zn2-xCuxSiO4之相對介電常數分析 121 5-3-7 Zn2-xCuxSiO4之共振頻率溫度飄移係數分析 122 5-3-8 總結 123 5-4 濾波器模擬與實作之探討 124 5-4-1 Al2O3基板濾波器之模擬與實作量測分析 124 5-4-2 Zn1.95Co0.05SiO4 (ZCS) 基板濾波器之模擬與實作量測分析 127 5-4-3 Zn2-xCuxSiO4(x=0.08)(ZCuS)基板濾波器之模擬與實作量測分析 130 5-4-4 總結 131 第六章 結論與未來方向 133 6-1 結論 133 6-2 未來方向 134 參考文獻 135

    [1] "5G毫米波通信剛需:低介電常數微波介質陶瓷." https://ppfocus.com/0/te906d91b.html (accessed June 1, 2023).
    [2] "濾波器是什麼?濾波器的定義、分類、功能." https://kknews.cc/zh-tw/tech/jvoa8xp.html (accessed June 1, 2023).
    [3] "陶瓷介质滤波器在5G新时代的前景." http://www.mat-test.com/Post/Details/PT191103000009bHeKg (accessed June 1, 2023).
    [4] "維基百科 IEEE 802.11 " https://zh.wikipedia.org/wiki/IEEE_802.11 (accessed June 1, 2023).
    [5] "遠傳 FET 生活誌.5G手機該怎麼挑選?這些規格弄懂就不會踩到雷." https://www.fetnet.net/content/cbu/tw/lifecircle/tech/202109/choose-5g-mobile-phone.html (accessed June 1, 2023).
    [6] "5G通讯用全介质腔体滤波器 " https://www.sic.cas.cn/zt/zscq/qydt/xxgn/202006/t20200629_5612829.html (accessed June 1, 2023).
    [7] "微波介質陶瓷研究現狀及其在5G/6G下的發展趨勢." http://www.gusulab.ac.cn/?content/551 (accessed June 1, 2023).
    [8] K. Du et al., "Phase compositions and crystal structure of Sn-deficient Ca2Sn2Al2O9 microwave dielectric ceramics with high Q×f values," Ceramics International, vol. 49, no. 1, pp. 202-209, 2023, doi: 10.1016/j.ceramint.2022.08.329.
    [9] "低温漂和零温漂滤波器解决温漂困扰【案例分析】." https://www.eet-china.com/mp/a25953.html (accessed June 1, 2023).
    [10] C.-F. Tseng, "Microwave Dielectric Properties of a New Ultra Low Loss Pervoskite Ceramic," Journal of the American Ceramic Society, vol. 91, no. 12, pp. 4125-4128, 2008, doi: 10.1111/j.1551-2916.2008.02779.x.
    [11] W. W. Cho, K.-i. Kakimoto, and H. Ohsato, "High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency," Japanese Journal of Applied Physics, vol. 43, no. 9R, 2004, doi: 10.1143/jjap.43.6221.
    [12] V. Sharon Samyuktha, A. Guru Sampath Kumar, T. Subba Rao, and R. Padma Suvarna, "Synthesis, structural and dielectric properties of Magnesium calcium titanate (1-x)MgTiO3-xCaTiO3 (x=0,0.1,0.2 and 0.3)," Materials Today: Proceedings, vol. 3, no. 6, pp. 1768-1771, 2016, doi: 10.1016/j.matpr.2016.04.072.
    [13] J. Zhang, Z. Yue, Y. Zhou, X. Zhang, and L. Li, "Microwave dielectric properties and thermally stimulated depolarization currents of (1−x)MgTiO3–xCa0.8Sr0.2TiO3 ceramics," Journal of the American Ceramic Society, vol. 98, no. 5, pp. 1548-1554, 2015.
    [14] W.-C. Tsai, K.-C. Chiu, Y.-X. Nian, and Y.-C. Liou, "Significant improvement of the microwave dielectric loss of Zn1.95M0.05SiO4 ceramics (M= Zn, Mg, Ni, and Co) prepared by reaction-sintering process," Journal of Materials Science: Materials in Electronics, vol. 28, no. 19, pp. 14258-14263, 2017.
    [15] Y. Guo, H. Ohsato, and K.-i. Kakimoto, "Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency," Journal of the European Ceramic Society, vol. 26, no. 10-11, pp. 1827-1830, 2006.
    [16] N. H. Nguyen, J. B. Lim, S. Nahm, J. H. Paik, and J. H. Kim, "Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4 ceramics," Journal of the American Ceramic Society, vol. 90, no. 10, pp. 3127-3130, 2007.
    [17] R. J. Cava, "Dielectric materials for applications in microwave communications," Journal of Materials Chemistry, vol. 11, no. 1, pp. 54-62, 2001, doi: 10.1039/b003681l.
    [18] Y. Lai et al., "Phase composition, crystal structure and microwave dielectric properties of Mg2−xCuxSiO4 ceramics," Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1508-1516, 2018, doi: 10.1016/j.jeurceramsoc.2017.10.035.
    [19] Y. Lai et al., "Structure dependence of microwave dielectric properties in Zn2-xSiO4-x-xCuO ceramics," Journal of the European Ceramic Society, vol. 41, no. 4, pp. 2602-2609, 2021, doi: 10.1016/j.jeurceramsoc.2020.12.013.
    [20] 劉國雄, 鄭晃中, 李勝隆, 林樹均, and 葉均蔚, 工程材料科學(新版). 全華圖書, 2009.
    [21] "陶瓷与精密陶瓷的区别 _ 精密陶瓷基础知识 _ 精密陶瓷的世界 _ 京瓷." https://www.kyocera.com.cn/fcworld/first/difference.html (accessed June 16, 2023).
    [22] "介電陶瓷_百度百科." https://baike.baidu.hk/item/%E4%BB%8B%E9%9B%BB%E9%99%B6%E7%93%B7/6928436 (accessed June 14, 2023).
    [23] "介電質 - 維基百科,自由的百科全書." https://zh.wikipedia.org/zh-tw/%E4%BB%8B%E9%9B%BB%E8%B3%AA (accessed June 14, 2023).
    [24] 郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 國立成功大學, 2004.
    [25] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 曉園出版社, 1987.
    [26] J. Singh and S. Bahel, "Structural, vibrational, optical, dielectric, and shielding characteristics of (1-x)Mg(Ti0.95Sn0.05)O3-(x)SrTiO3 (0 ≤ x ≤ 0.1) ceramics," Materials Research Bulletin, vol. 139, 2021, doi: 10.1016/j.materresbull.2021.111245.
    [27] "Fine Ceramics World " https://global.kyocera.com/fcworld/charact/heat/thermaexpan.html (accessed June 1, 2023).
    [28] S. Zhang et al., "Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics," Journal of the American Ceramic Society, vol. 100, no. 4, pp. 1508-1516, 2017, doi: 10.1111/jace.14648.
    [29] 彭成鑑, 精密陶瓷技術概論. 工業技術研究院工業材料研究所, 1989.
    [30] R. M. German, Sintering Theory and Practice. Canada, 1996.
    [31] "固相燒結理論_簡介,燒結過程,分類,燒結成分,影響燒結過程的因素,_中文百科全書." https://www.newton.com.tw/wiki/%E5%9B%BA%E7%9B%B8%E7%87%92%E7%B5%90%E7%90%86%E8%AB%96 (accessed June 18, 2023).
    [32] "固相燒結_單元系燒結,影響燒結過程的因素,燒結過程,多元系固相燒結,固相燒結動力學_中文百科全書." https://www.newton.com.tw/wiki/%E5%9B%BA%E7%9B%B8%E7%87%92%E7%B5%90/5445152 (accessed June 18, 2023).
    [33] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.
    [34] J.-H. Chen, Y.-C. Liou, and K.-H. Tseng, "Stoichiometric Perovskite Lead Magnesium Niobate Ceramics Produced by Reaction-Sintering Process," Japanese Journal of Applied Physics, vol. 42, no. Part 1, No. 1, pp. 175-181, 2003, doi: 10.1143/jjap.42.175.
    [35] Y.-C. Liou, "Stoichiometric perovskite PMN-PT ceramics produced by reaction-sintering process," Materials Science and Engineering: B, vol. 103, no. 3, pp. 281-284, 2003, doi: 10.1016/s0921-5107(03)00267-8.
    [36] Y.-C. Liou, "Effect of heating rate on properties of Pb(Mg1/3Nb2/3)O3 ceramics produced by the reaction-sintering process," Materials Letters, vol. 58, no. 6, pp. 944-947, 2004, doi: 10.1016/j.matlet.2003.07.041.
    [37] 黃宏偉, "反應燒結法和機械化學合成奈米粉體在微波介電陶瓷(Zr0.8,Sn0.2)TiO4," 國立成功大學, 2010.
    [38] "浅谈碳化硅陶瓷的六种烧结工艺." https://www.zhjmtc.com/newsinfo/822942.html (accessed June 1, 2023).
    [39] Y. Miyauchi, I. Kagomiya, Y. Shimizu, and H. Ohsato, "Microstructures and Microwave Dielectric Properties on Annealed Al2O3-TiO2 Composite Ceramics," Key Engineering Materials, vol. 388, pp. 251-254, 2008, doi: 10.4028/www.scientific.net/KEM.388.251.
    [40] J.-m. Chen, H.-p. Wang, S.-q. Feng, H.-p. Ma, D.-g. Deng, and S.-q. Xu, "Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics," Ceramics International, vol. 37, no. 3, pp. 989-993, 2011, doi: 10.1016/j.ceramint.2010.11.020.
    [41] J.-Y. Chen and C.-L. Huang, "A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics," Materials Letters, vol. 64, no. 23, pp. 2585-2588, 2010, doi: 10.1016/j.matlet.2010.08.046.
    [42] "materialsproject. "Zn2SiO4"." https://materialsproject.org/materials/mp-3789/ (accessed June 17, 2023).
    [43] 胡婧雯, 李谦, 黄金亮, 顾永军, and 李栋, "添加 CuO 对 Zn2SiO4 陶瓷微波介电性能的影响," 压电与声光, vol. 37, no. 2, pp. 301-303, 2015.
    [44] M.-W. Zuo, W. Li, J.-L. Shi, and Q. Zeng, "Influence of CuO addition to BaSm2Ti4O12 microwave ceramics on sintering behavior and dielectric properties," Materials Research Bulletin, vol. 41, no. 6, pp. 1127-1132, 2006, doi: 10.1016/j.materresbull.2005.11.005.
    [45] Y. Zhang, Y. Zhang, M. Xiang, S. Liu, and H. Liu, "Low temperature sintering and microwave dielectric properties of CoTiNb2O8 ceramics with CuO addition," Ceramics International, vol. 42, no. 2, pp. 3542-3547, 2016, doi: 10.1016/j.ceramint.2015.10.162.
    [46] K. X. Song, X. M. Chen, and C. W. Zheng, "Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system," Ceramics International, vol. 34, no. 4, pp. 917-920, 2008, doi: 10.1016/j.ceramint.2007.09.057.
    [47] S. T. Lee et al., "Grain boundary segregation and microwave dielectric properties of low loss Mg1.5Zn0.5SiO4ceramics containing Bi2O3," Advances in Applied Ceramics, vol. 109, no. 6, pp. 367-372, 2013, doi: 10.1179/174367609x455995.
    [48] S. Butee, A. R. Kulkarni, O. Prakash, R. P. R. C. Aiyar, K. Sudheendran, and K. C. R. James, "R.F. and microwave dielectric properties of (Zn0.95M0.05)2TiO4 (M=Mn2+, Co2+, Ni2+ or Cu2+) ceramics," Materials Science and Engineering: B, vol. 168, no. 1-3, pp. 151-155, 2010, doi: 10.1016/j.mseb.2009.11.007.
    [49] S. Butee et al., "Significant enhancement in quality factor of Zn2TiO4 with Cu-substitution," Materials Science and Engineering: B, vol. 176, no. 7, pp. 567-572, 2011, doi: 10.1016/j.mseb.2011.01.013.
    [50] S. B. Narang and S. Bahel, "Low loss dielectric ceramics for microwave applications: a review," J. Ceram. Process. Res, vol. 11, no. 3, pp. 316-321, 2010.
    [51] J. Sheen, "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, vol. 20, no. 4, 2009, doi: 10.1088/0957-0233/20/4/042001.
    [52] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
    [53] "巴特沃斯滤波器 python_巴特沃斯、切比雪夫、贝塞尔滤波器的区别_不遇白的博客-CSDN博客." (accessed June 6, 2023).
    [54] "無源帶通濾波器 _ 他山教程,只選擇最優質的自學材料." http://www.tastones.com/zh-tw/tutorial/filters/passive-band-pass/ (accessed June 20, 2023).
    [55] M. Sadiku, "Elements of Electromagnetics. ," Oxford University Press, 2001.
    [56] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計. 全華圖書, 2017.
    [57] M.-H. Weng, C.-W. Hsu, S.-W. Lan, and R.-Y. Yang, "An Ultra-Wideband Bandpass Filter with a Notch Band and Wide Upper Bandstop Performances," Electronics, vol. 8, no. 11, 2019, doi: 10.3390/electronics8111316.
    [58] S. Saleh, W. Ismail, I. S. Zainal Abidin, and M. H. Jamaluddin, "5G Hairpin and Interdigital Bandpass Filters," International Journal of Integrated Engineering, vol. 12, no. 6, 2020, doi: 10.30880/ijie.2020.12.06.009.
    [59] 林威宇, "利用質量負載效應實現二階 FBAR 射頻濾波器之研究 Study on the Second Order RF Filters of FBARs Using Mass Loading Effect," 國立成功大學, 2022.
    [60] 莊凱翔, "使用旋轉壓縮成形製作具有梯度微結構與硬度之鎂合金材料," 國立中山大學, 2016.
    [61] "嘉富億科技股份有限公司-X射線螢光分析儀(XRF),膜厚儀,RoHS2.0." https://www.garefully.com.tw/tw/news/show.php?item=271 (accessed July 5, 2023).
    [62] "電鏡能譜(EDS),作用真不簡單 - 每日頭條." https://kknews.cc/zh-tw/news/vln3b9a.html (accessed July 5, 2023).
    [63] B. Hakki and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
    [64] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [65] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586-592, 1985.
    [66] L. Li, J. Y. Zhu, and X. M. Chen, "Measurement Error of Temperature Coefficient of Resonant Frequency for Microwave Dielectric Materials by TE01δ-Mode Resonant Cavity Method," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3781-3786, 2016, doi: 10.1109/tmtt.2016.2601928.
    [67] Y. Al-Yasir et al., "Novel and Very Compact Reconfigurable Bandpass to Lowpass/Bandpass Microstrip Filter with Wide-stopband Restriction for 5G Communications," in Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 28-30 June 2020, 2020.
    [68] R. Ji, G. T. Flowers, J. Gao, Z. Cheng, and G. Xie, "High-Frequency Characterization and Modeling of Coaxial Connectors With Degraded Contact Surfaces," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 3, pp. 447-455, 2018, doi: 10.1109/tcpmt.2017.2776405.
    [69] R. S. Timsit, "High Speed Electronic Connectors: A Review of Electrical Contact Properties," IEICE Transactions on Electronics, vol. E88-C, no. 8, pp. 1532-1545, 2005, doi: 10.1093/ietele/e88-c.8.1532.
    [70] X. Duan, Q. Liu, and Z. Yuan, "Research on Microstrip Transmission Performance in Microwave Circuit Board," in 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2019: IEEE, pp. 1-3.
    [71] M. T. Sebastian, R. Ubic, and H. Jantunen, "Low-loss dielectric ceramic materials and their properties," International Materials Reviews, vol. 60, no. 7, pp. 392-412, 2015, doi: 10.1179/1743280415y.0000000007.
    [72] Y. C. Liou, C. Y. Liu, and K.-Z. Fung, "Synthesis and properties of Ba2La3Ti3NbO15 ceramics by a reaction-sintering process," Ceramics International, vol. 34, no. 8, pp. 2079-2083, 2008, doi: 10.1016/j.ceramint.2007.08.005.
    [73] J. Li, P. Xu, T. Qiu, and L. Yao, "Sintering characteristics and microwave dielectric properties of 0.5Ca0.6La0.267TiO3-0.5Ca(Mg1/3Nb2/3)O3 ceramics prepared by reaction-sintering process," Journal of Rare Earths, vol. 36, no. 4, pp. 404-408, 2018, doi: 10.1016/j.jre.2017.10.004.
    [74] "Cobalt carbonate hydrate." https://www.aladdin-e.com/zh_en/c118654.html?refSrc=23789&nosto=nosto-page-product2&___from_store=zh_cn (accessed June 1, 2023).
    [75] Z. Liang et al., "Influence of CuO additive on phase formation, microstructure and microwave dielectric properties of Cu-doped CuxZn1.8-xSiO3.8 ceramics," Applied Physics A, vol. 128, no. 1, 2021, doi: 10.1007/s00339-021-05202-4.
    [76] "什麼是奈米陶瓷塗佈 @ 補鍋達人 老鍋回春 __ 痞客邦 __." (accessed June 23, 2023).
    [77] T. Shi et al., "Fabrication, sinterability and microwave dielectric properties of MgTiO3−(Ca0.8Sr0.2)TiO3 composite ceramics from nanosized powders," Vacuum, vol. 201, 2022, doi: 10.1016/j.vacuum.2022.111107.

    下載圖示 校內:2025-07-20公開
    校外:2025-07-20公開
    QR CODE