簡易檢索 / 詳目顯示

研究生: 趙振傑
Zhao, Zhen-Jie
論文名稱: 應用雷射箔材3D列印技術於高強度鎂合金件之製造與研究
High Strength Magnesium Alloy Parts Fabricated by Laser-Foil-Printing Process
指導教授: 洪嘉宏
Hung, Chia-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 54
中文關鍵詞: 增材製造AZ31B鎂合金雷射箔材列印技術極限抗拉強度伸長率
外文關鍵詞: additive manufacturing, AZ31B magnesium alloy, laser-foil-printing process, ultimate tensile stress, elongation
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,雷射箔材 3D 列印(LFP)技術成功用於製造具有高強度和延展性的AZ31B鎂合金,且沒有風險。與雷射粉末床熔融(L-PBF)製程相比,雷射箔材列印技術具有更好的抗氧化性能,並減輕了使用箔作為原料時與鎂相關的潛在爆炸風險。採用雷射功率為 350 W 和掃描速度為 70 mm/s 時,LFP 製造的AZ31B 零件(相對密度約為99.9%)的微觀結構、硬度和拉伸性能進行了表徵。拉伸結果表明,沿著建築方向的最終拉伸強度(UTS)為 282.3 MPa,延伸率(EL)為35.2%,其機械性能優於其他雷射增材製造(LAM)工藝,因為LFP使用的箔材冷卻速度比L-PBF使用的粉末快。透過電子背散射衍射(EBSD)技術,LFP零件的晶粒尺寸比電弧增材製造(WAAM)零件更細,這是由於其更高的冷卻速度。EBSD 的極圖顯示沿著{0001}方向是晶粒的優選取向,這與 X 射線衍射(XRD)圖譜一致。此外,XRD結果顯示LFP零件中沒有出現Mg17Al12化合物,這可能有助於LFP零件的高延展性。

    In this study, the laser-foil-printing (LFP) process has been successfully used to manufacture the AZ31B magnesium alloy with high strength and ductility in a risk-free way. Compared to the laser powder bed fusion (L-PBF) processes, the LFP process offers improved resistance to oxidation and mitigates the potential explosive risks associated with magnesium using foil as the feedstock material. The microstructure, hardness, and tensile properties of the LFP-fabricated AZ31B parts (approximately 99.9% relative density) were characterized at a laser power of 350 W and a scanning speed of 70 mm/s. The tensile results indicated that the ultimate tensile strength (UTS) and elongation (EL) in the building direction are 282.3 MPa and 35.2 %, respectively, which possesses superior mechanical properties than other laser additive manufacturing (LAM) processes because the foil used in LFP is cooling faster than the powder used in LAM. Through electron backscatter diffraction (EBSD) technique, the grain size of LFP parts was finer compared to wire-arc additive manufacturing (WAAM) parts, due to its higher cooling rate. The pole figures in EBSD indicate that the direction along {0001} is the preferred grain orientation, which is matched with the X-ray diffraction (XRD) patterns. In addition, the XRD results show that the Mg17Al12 compound does not appear in the LFP parts, which may contribute to the high ductility of the LFP parts.

    Abstract I 中文摘要 II 致謝 III List of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Preface 1 1.1.1 Magnesium alloy AZ31B 1 1.1.2 Welding of magnesium alloy 1 1.1.3 Laser foil printing 3 1.1.4 The challenge of magnesium Alloy AZ31B 4 1.2 Literature review 5 1.2.1 Review of additive manufacturing of AZ31B 5 1.3 Research motivation 9 Chapter 2 Methodology 10 2.1 AZ31B LFP flow chart 10 Chapter 3 Experiment setup 12 3.1 Apparatus 12 3.2 LFP process 13 3.3 Characterization 14 Chapter 4 Optimizations of parameters and Results 16 4.1 Optimizations of parameters 16 4.1.1 Single track results 16 4.1.2 Multiple tracks result 19 4.2 Multilayers results 25 4.3 Tensile test and fracture surfaces 27 4.4 Microstructure 31 4.4.1 EBSD results 31 4.4.2 XRD results 35 Chapter 5 Conclusions and future works 37 5.1 Conclusions 37 5.2 Future works 37 References 39

    [1] T. C. Xu, Y. Yang, X. D. Peng, J. F. Song, F. S. Pan, “Overview of advancement and development trend on magnesium alloy.” Journal of Magnesium and Alloys, vol. 7, p. 536-544, 2019.
    [2] Y. Y. Guo, G. F. Quana, Y. L. Jiang, L. B. Rena, L. L. Fana, H. H. Pana, “Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding.” Journal of Magnesium and Alloys, vol. 9, p. 192-201, 2021.
    [3] N. Xu, J. Shen, W. D. Xie, L. Z. Wang, D. Wang, D. Min, “Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates.”Materials Characterization, vol. 61, p. 713-719, 2010.
    [4] X. P. Wang, Y. Morisada, H. Fujii, “Interface development and microstructure evolution during double-sided friction stir spot welding of magnesium alloy by adjustable probes and their effects on mechanical properties of the joint.” Journal of Materials Processing Technology, vol. 294, p. 117104, 2021.
    [5] H. F. Zhang, L. Zhou, W. L. Li, G. H. Li, Y. T. Tang, N. Guo, J. C. Feng, “Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints.” International Journal of Minerals, Metallurgy and Materials, vol. 28, p. 699, 2021.
    [6] Z. L. Lei, J. Bi, P. Li, T. Guo, Y. B. Zhao, D. M. Zhang, “Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy.” Optics and Laser Technology, vol. 105, p. 15-22, 2018.
    [7] K. D. Hao, H. K. Wang, M. Gao, R. Wua, X. Y. Zeng, “Laser welding of AZ31B magnesium alloy with beam oscillation.” Journal of Materials Research and Technology, vol. 8, p. 3044-3053, 2019.
    [8] X. B. Zhang, Z. Y. Cao, “Effects of pulse shaping on Nd:YAG laser spot welds in an AZ31 magnesium alloy.” Optics and Lasers in Engineering, vol. 119, p. 1-8, 2019.
    [9] M. Gao, Y. Cao, X. Y. Zeng, T. X. Lin, “Mechanical properties and microstructures of hybrid laser MIG welded dissimilar Mg-Al-Zn alloys.” Science and Technology of Welding and Joining, vol. 15, p. 638-645, 2010.
    [10] C. A. Walsh, “LASER WELDING - Literature Review.” Materials Science and Metallurgy Department, University of Cambridge, 2002.
    [11] M. J. Zhang, J. Wu, C. Mao, B. Cheng, H. M. D. Shakhawat, H. Q. Li, K. M. Wang, J. Zhang, Y. G. Hu, Z. M. Bi, “Impact of power modulation on weld appearance and mechanical properties during laser welding of AZ31B magnesium alloy.” Optics & Laser Technology, vol. 156, p. 108490, 2022.
    [12] T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, “Additive manufacturing of metallic components – Process, structure and properties.” Progress in Materials Science, vol. 92, p. 112-224, 2018.
    [13] R. Leal, F. M. Barreiros, L. Alves, F. Romeiro, J. C. Vasco, M. Santos, C. Mart, “Additive manufacturing tooling for the automotive industry.” The International Journal of Advanced Manufacturing Technology, vol. 92, p. 1671-1676, 2017.
    [14] B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. D. Plessis, “Metal additive manufacturing in aerospace: A review.” Materials & Design, vol. 209, p. 110008, 2021.
    [15] M. Salmi, “Additive Manufacturing Processes in Medical Applications.” Materials, vol. 14, p. 191, 2021.
    [16] Y. Shen, Y. Li, C. Chen, H. L. Tsai, “3D printing of large, complex metallic glass structures.” Materials and Design, vol. 117, p. 213-222, 2017.
    [17] C. H. Hung, W. T. Chen, M. H. Sehhat, M. C. Leu, “The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing.” The International Journal of Advanced Manufacturing Technology, vol. 112, p. 867-877, 2021.
    [18] C. H. Hung, Y. Li, A. Sutton, W. T. Chen, X. Gong, H. Pan, H. L. Tsai, Ming C. Leu, “Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, and Mechanical Properties.” Materials, vol. 13, no. 2, p. 414, 2020.
    [19] Y. X. Wang, C. H. Hung, H. Pommerenke, S. H. Wu, T. Y. Liu, “Fabrication of crack-free aluminum alloy 6061 parts using laser foil printing process.” Rapid Prototyping Journal, vol. 30, p. 722-732, 2024.
    [20] M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, C. Glorieux, “Photopyroelectric measurement of thermal conductivity of metallic powders.” Journal of Applied Physis, vol. 97, p. 1-9, 2005.
    [21] H. Takagi, H. Sasahara, T. Abe, H. Sannomiya, S. Nishiyama, S. Ohta, K. Nakamura, “Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing.” Additive Manufacturing, vol. 24, p. 498-507. 2018.
    [22] Q. H. Cao, B. J. Qi, C. Y. Zeng, R. Z. Zhang, B. C. He, Z. W. Qi, F. D. Wang, H. B. Wang, B. Q. Cong, “Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc.” Journal of Alloys and Compounds, vol. 909, 2022.
    [23] K. Li, C. Ji, S. W. Bai, B. Jiang, F. S. Pan, “Selective laser melting of magnesium alloys: Necessity, formability, performance, optimization and applications.” Journal of Materials Science & Technology, vol. 154, p. 65-93, 2023.
    [24] M. Harooni, B. Carlson, R. Kovacevic, “Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis.” Optics and Lasers in Engineering, vol. 56, p. 54-66, 2014.
    [25] S. A. Liu, H. J. Guo, “A Review of SLMed Magnesium Alloys: Processing, Properties, Alloying Elements and Postprocessing.” Metals, vol. 10, p. 1073, 2020.
    [26] E. O. Olakanmi, R. F. Cochranea, K. W. Dalgarnoc, “A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties.” Progress in Materials Science. vol.74, p. 401-477, 2015.
    [27] Y. J. Lu, S. Q. Wu, Y. L. Gan, T. T. Huang, C. G. Yang, J. J. Lin, J. X. Lin, “Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy.” Optics & Laser Technology, vol.75, p. 197-206, 2015.
    [28] K. W. Wei, M. Gao, Z. M. Wang, X. Y. Zeng, “Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy.” Materials Science & Engineering A, vol. 611, p. 212-222, 2014.
    [29] J. G. Liu, B. Z. Yin, P. Wen, Y. Tian, “Laser powder bed fusion of WE43 magnesium alloy porous scaffolds: investigation on densification behavior and dimensional accuracy.” Advanced Laser Processing and Manufacturing V, vol. 11892, p. 118920F, 2021.
    [30] C. J. Shuai, Y. W. Yang, P. Wu, X. Lin, Y. Liu, Y. Z. Zhou, P. Feng, X. Y. Liu, S. P. Peng, “Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy.” Journal of Alloys and Compounds, vol. 691, p. 961-969, 2017.
    [31] H. Hyer, L. Zhou, G. Benson, B. McWilliams, K. Cho, Y. H. Sohn, “Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion.” Additive Manufacturing, vol. 33, p. 101123, 2020.
    [32] A. Pawlak, S. E. Patrycja, T. Kurzynowski, E. Chlebus, “Selective laser melting of magnesium AZ31B alloy powder.” Rapid Prototyping Journal, vol. 26, p. 249-258, 2020.
    [33] B. AlMangour, J. Q. Cheng, D. Grzesiak, Y. J. Hwang, K. A. Lee, “Fundamental Study on the Development of Pure Magnesium Parts by Additive Manufacturing: An Experimental and Computational Analysis” Metals and Materials International, vol. 29, p. 429-443, 2023.
    [34] P. Wang, H. Z. Zhang, H. Zhu, Q. Z. Li, M. N. Feng, “Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior.” Journal of Materials Processing Technology, vol. 288, p. 116895, 2021.
    [35] X. W. Fang, J. N. Yang, S. P. Wang, C. B. Wang, K. Huang, H. N. Li, B. H. Lu, “Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: Microstructure, mechanical property, and electromechanical corrosion performance.” Journal of Materials Processing Technology, vol. 300, p. 117430, 2022.
    [36] M. Wahba, S. Katayama, “Laser welding of magnesium alloys.” Transactions of JWRI, vol. 41, p.11-23, 2012.
    [37] M. H. Nasab, D. Gastaldi, N. F. Lecis, M. Vedani, “On morphological surface features of the parts printed by selective laser melting (SLM).” Additve Manufacturing, vol. 24, p. 373-377, 2018.
    [38] J. Kim, S, Kim, K. Kim, W. Jung, D. Youn, J. Lee, H. Ki, “Effect of beam size in laser welding of ultra-thin stainless steel foils.” Journal of Materials Processing Technology, vol. 233, p. 125-134, 2016.
    [39] X. Yang, J. R. Liu, Z. N. Wang, X. Lin, F. C. Liu, W. D. Huang, E. Q. Liang, “Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process.” Materials Science and Engineering: A, vol. 774, p. 138942, 2020.
    [40] Z. L. Lei, J. Bi, P. Li, T. Guo, Y. B. Zhao, D. M. Zhang, “Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy.” Optics & Laser Technology, vol. 105, p. 15-22, 2018.
    [41] J. Guo, Y. Zhou, C. M. Liu, Q. R. Wu, X. P. Chen, J. P. Lu, “Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency.” Materials, vol. 9, p. 823, 2016.
    [42] H. T. Liu, J. U. Zhou, Y. F. Chen, T. Li, X. B. Jiao, Y. S. Yang, T. Lin, K. M. Cheng, “Characterization of AZ31B magnesium alloy joints welded with a Nd:YAG laser.” Materials and technology, vol. 52, p. 487-492, 2018.
    [43] S. F. Su, J. C. Huang, H. K. Lin, N. J. Ho, “Electron-Beam Welding Behavior in Mg-Al–Based Alloys.” Metallurgical and Materials Transactions A, vol. 33, p. 1461-1473, 2002.
    [44] L. L. C. Catorceno, H. F. G. de Abreu, A. F. Padilha, “Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet.” Journal of Magnesium and Alloys, vol. 6, p. 121-133, 2018.
    [45] H. Cao, M. Wessén, “Effect of microstructure on mechanical properties of as-cast Mg-Al alloys.” Metallurgical and Materials Transactions A, vol. 35, p. 309-319, 2004.

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE