簡易檢索 / 詳目顯示

研究生: 張惠雯
Chang, Hui-Wen
論文名稱: 應用於生醫訊號擷取系統之可調式連續趨近式類比數位轉換器
Adaptive Successive Approximation ADC for Biomedical Acquisition System
指導教授: 羅錦興
Luo, Ching-Hsing
共同指導: 黃弘一
Huang, Hong-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 連續趨近式類比數位轉換器可調式生醫訊號擷取系統
外文關鍵詞: Successive Approximation Register Analog-to-Digital Converter (SA ADC), Adaptive, Biomedical Acquisition Systems
相關次數: 點閱:161下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生醫訊號擷取系統中,類比數位轉換器擔任將類比訊號轉換成數位訊號的重要角色。本研究採用連續趨近式類比數位轉換器的架構,由於其具有低功耗、中等轉換速度與高解析度的特點,適合生醫訊號的應用,而其架構由取樣保持電路、比較器、連續趨近式暫存器控制邏輯閘、數位類比轉換電容陣列與輸出暫存器所組成。在此為達到12位元解析度,以雙端差動對輸入的架構實現,並採用有效能量開關切換的方式來降低功耗,並且改變其切換方式,使得數位類比轉換器電容陣列之輸出能夠往共模準位電壓作逼近,以降低比較器偏移之變化。在生醫系統操作中,為了使所提出的連續趨近式類比數位轉換器能符合多種生醫訊號使用,在此設計可調的功能,使其亦能操作在8位元的解析度下。另外,為了避免在8位元操作時浪費多餘的功耗,只切換八位元所須之電容陣列與邏輯閘來做改善。晶片使用台積電0.18微米1P6M製程實現,供應電壓為1.8伏特,取樣頻率為200千赫茲。在輸入頻率10千赫茲下,由實際量測結果顯示,訊號與雜訊失真比為65.69分貝,有效位元數為10.62位元,晶片核心面積為0.904*0.65平方毫米。

    An analog-to-digital converter (ADC) plays an important role to transfer analog signals to digital codes for a biomedical acquisition system due to its characteristics of low power consumption, medium speed and high resolution. A successive approximation analog-to-digital converter (SA ADC) is composed of a sample-and-hold (S/H) circuit, a comparator, a successive approximation register (SAR) control logic, capacitor array of digital-to-analog converter (DAC) and an output register. The fully differential architecture and energy-efficient switching scheme are adopted to achieve 12-bit resolution and reduce the power consumption, respectively. Switching operation is modified to make the output voltage of the capacitor array of the DAC to approach the common mode voltage, Vcm, for reducing the variation of comparator offset voltage. For various biomedical signal applications, an adaptive resolution ADC is designed to operate not only in 12-bit but also in 8-bit resolution. The proposed SA ADC also improves the power consumption in 8-bit operation. The proposed ADC was implemented in TSMC 0.18-µm CMOS process. The measurement results show that SNDR is 65.59 dB and ENOB is 10.62 bits at 1.8 V supply voltage. The core area of the chip is 0.904*0.65 mm^2.

    第一章 緒論 1 1.1 研究背景 1 1.2 設計考量 1 1.3 論文架構 3 第二章 SA ADC原理架構介紹 4 2.1 SA ADC介紹 4 2.1.1 SA ADC原理 4 2.1.2 SA ADC 架構 5 2.2 電荷重新分佈ADC 6 2.2.1 Unipolar Charge-Redistribution ADC 7 2.2.2 使用單一參考電壓之Signed Charge-Redistribution ADC 9 2.3 改良型單端SA ADC 11 2.4 傳統雙端輸入之SA ADC 12 2.5 有效率能量開關切換之SA ADC 12 第三章 可調式12位元連續漸進式類比數位轉換器 15 3.1 提出SA ADC架構 15 3.2 提出之SA ADC操作 16 3.3 電路實現 20 3.3.1 取樣保持電路(Sample and Hold, S/H) 20 3.3.2 比較器(Comparator) 23 3.3.3 數位類比轉換器(Digital to Analog Converter) 29 3.3.4 Successive Approximation Register (SAR) 30 第四章 電路模擬結果 33 4.1 Pre-Simulation 33 4.1.1 SA ADC操作模擬 33 4.1.2 SA ADC之規格 35 4.2 Post-Simulation 37 4.2.1 SA ADC操作模擬 38 4.2.2 SA ADC規格 39 第五章 晶片佈局與量測考量 42 5.1 晶片佈局 42 5.1.1 DAC電容陣列佈局 42 5.1.2 數位控制電路 43 5.1.3 取樣(S/H)電路 44 5.1.4 比較器Comparator 45 5.1.5 接腳說明 45 5.2 量測環境與測試版 47 5.2.1 電壓源供應 48 5.2.2 參考電壓源 49 5.2.3 測試板 49 5.3 量測結果 50 5.3.1 靜態規格 50 5.3.2 動態規格 52 第六章 總結與未來展望 57 6.1 總結 57 6.2 未來展望 57 Reference 59

    [1] Z. Xiaodan, X. Xiaoyuan, Y. Libin, and L. Yong, “A 1-V 450-nW fully integrated programmable biomedical sensor iInterface chip,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1067-1077, Apr. 2009.
    [2] R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60μW 60nV/rt Hz readout front-end for portable biopotential acquisition systems,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1100-1110, May 2007.
    [3] D. A. Johns and K. Martin, Analog Integrated Circuit Design: John Wiley & Sons, Nov. 1997.
    [4] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York: Oxford University Press, Jan. 2002.
    [5] J. L. McCreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques-part I,” IEEE Journal of Solid-State Circuits, vol. 10, pp. 371-379, Dec. 1975.
    [6] H.-C. Hong and G.-M. Lee, “A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 2161-2168, Oct. 2007.
    [7] R. K. Hester, K. S. Tan, M. de Wit, J. W. Fattaruso, S. Kiriaki, and J. R. Hellums, “Fully differential ADC with rail-to-rail common-mode range and nonlinear capacitor compensation,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 173-183, Feb. 1990.
    [8] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications,” in IEEE Asian Solid-State Circuits Conference, Nov. 2007, pp. 228-231.
    [9] B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in IEEE International Symposium on Circuits and Systems, Jul. 2005, vol. 1, pp. 184-187.
    [10] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS process,” in 2009 Symposium on VLSI Circuits, Aug. 2009, pp. 236-237.
    [11] J. Shan, D. Manh Anh, Y. Kiat Seng, and L. Wei Meng, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 1430-1440, Jul. 2008.
    [12] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New York: McGraw-Hill, Aug. 2000.
    [13] D. Aksin, M. Al-Shyoukh, and F. Maloberti, “Switch bootstrapping for precise sampling beyond supply voltage,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 1938-1943, Aug. 2006.
    [14] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
    [15] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 731-740, Apr. 2010.
    [16] A. Nikoozadeh and B. Murmann, “An analysis of latch comparator offset due to load capacitor mismatch,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 1398-1402, Dec. 2006.
    [17] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1148-1158, Jul. 2004.
    [18] G.-Y. Huang, “Design of energy efficient successive-approximation analog-to-digital converter,” Master thesis, Department of Electrical Engineering, National Cheng Kung University, Jul. 2007.
    [19] T.-Y. Hsieh, “A digital calibration scheme for the successive approximation analog-to-digital converter,” Master thesis, Department of Electrical Engineering, National Chiao-Tung University, Mar. 2009.
    [20] N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1196-1205, Jun. 2007.
    [21] H.-S. Lee and D. Hodges, “Accuracy considerations in self-calibrating A/D converters,” IEEE Transactions on Circuits and Systems, vol. 32, pp. 590-597, Jan. 1985.

    下載圖示
    2016-08-24公開
    QR CODE