| 研究生: |
陳世翔 Chen, Shi-Xiang |
|---|---|
| 論文名稱: |
以氮化鉻奈米島緩衝層在矽基板上使用分子束磊晶成長(10-13)面的半極性氮化鎵 Growth of (10-13) Semipolar GaN on Silicon substrate with CrN nanoislands buffer layer by Molecular Beam Epitaxy |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 矽基板 、緩衝層 、分子束磊晶 、半極性 、氮化鎵 、氮化鉻 、奈米島 |
| 外文關鍵詞: | Silicon substrate, CrN, buffer layer, nanoislands, GaN, Molecular Beam Epitaxy (MBE), semipolar |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,主要是在Si(111)的基板上使用氮化鉻(CrN)奈米島(nanoisland)做緩衝層(buffer layer)來成長最近相當熱門的III-V 族寬能隙半導體材料氮化鎵(GaN)磊晶層並對其磊晶層的特性做深入的探討。
實驗的部份,我們以射頻濺鍍系統(RF Sputtering system) 在Si(111)基板上成長鉻金屬層,然後在分子束磊晶系統(Molecular Beam Epitaxy System)中氮化以得到氮化鉻奈米島作為緩衝層來成長氮化鎵磊晶層作為研究主軸。
論文主要分為二個部份:第一部份為使用氮化鉻薄膜做為緩衝層在不同的磊晶參數下成長氮化鎵磊晶層的研究。第二部份則為討論氮化鎵磊晶層在使用氮化鉻奈米島作為緩衝層的情況下成長而得的結晶性及光電特性的影響為何。
In this study, the GaN epitaxial layer was fabricated by CrN nanoislands buffer layer on Si(111), and make the in-depth exploration for the GaN layer.
The RF Sputtering system was used to form the Cr metal layer, and the the nitridation process was performed in the molecular chamber before the GaN epilayer growth.
The thesis is divided into two parts as GaN epilayer growth with various epitaxial recipe by the use of CrN buffer layer for the first part,
and the research of crystalline and optoelectronic characteristic for the GaN epitaxial layer by the use of GrN nanoislands buffer layer for the second part.
[1] H. Morkoc, S. Strite, G. B. Gao et al., “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” Journal of Applied Physics, vol. 76, no. 3, pp. 1363-1398, 1994.
[2] D. A. Neumayer, and J. G. Ekerdt, “Growth of group III nitrides. A review of precursors and techniques,” Chemistry of Materials, vol. 8, no. 1, pp. 9-25, 1996.
[3] S. N. Mohammad, A. A. Salvador, and H. Morkoc, “EMERGING GALLIUM NITRIDE BASED DEVICES,” Proceedings of the Ieee, vol. 83, no. 10, pp. 1306-1355, 1995.
[4] M. N. Yoder, “Wide bandgap semiconductor materials and devices,” Electron Devices, IEEE Transactions on, vol. 43, no. 10, pp. 1633-1636, 1996.
[5] A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure,” Journal of Applied Physics, vol. 74, no. 11, pp. 6734-6739, 1993.
[6] T. Takeuchi, S. Sota, M. Katsuragawa et al., “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Japanese Journal of Applied Physics, vol. 36, no. Part 2, No. 4A, pp. L382, 1997.
[7] P. Kozodoy, M. Hansen, S. P. DenBaars et al., “Enhanced Mg doping efficiency in Al[sub 0.2]Ga[sub 0.8]N/GaN superlattices,” Applied Physics Letters, vol. 74, no. 24, pp. 3681-3683, 1999.
[8] G. Martin, A. Botchkarev, A. Rockett et al., “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Applied Physics Letters, vol. 68, no. 18, pp. 2541-2543, 1996.
[9] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,” Journal of Applied Physics, vol. 81, no. 9, pp. 6332-6338, 1997.
[10] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Physical Review B, vol. 56, no. 16, pp. 10024-10027, 1997.
[11] H. M. Ng, “Molecular-beam epitaxy of GaN/Al[sub x]Ga[sub 1 - x]N multiple quantum wells on R-plane (101-bar 2) sapphire substrates,” Applied Physics Letters, vol. 80, no. 23, pp. 4369-4371, 2002.
[12] M. D. Craven, S. H. Lim, F. Wu et al., “Structural characterization of nonpolar (112-bar 0) a-plane GaN thin films grown on (11-bar 02) r-plane sapphire,” Applied Physics Letters, vol. 81, no. 3, pp. 469-471, 2002.
[13] B. A. Haskell, F. Wu, S. Matsuda et al., “Structural and morphological characteristics of planar (112-bar 0) a-plane gallium nitride grown by hydride vapor phase epitaxy,” Applied Physics Letters, vol. 83, no. 8, pp. 1554-1556, 2003.
[14] A. Setiawan, Z. Vashaei, M. W. Cho et al., “Characteristics of dislocations in ZnO layers grown by plasma-assisted molecular beam epitaxy under different Zn/O flux ratios,” Journal of Applied Physics, vol. 96, no. 7, pp. 3763-3768, 2004.
[15] T. Minegishi, J. Yoo, H. Suzuki et al., "Selective growth of Zn- and O-polar ZnO layers by plasma-assisted molecular beam epitaxy." pp. 1286-1290.
[16] Z. Vashaei, T. Minegishi, H. Suzuki et al., “Structural variation of cubic and hexagonal Mg[sub x]Zn[sub 1 - x]O layers grown on MgO(111)/c-sapphire,” Journal of Applied Physics, vol. 98, no. 5, pp. 054911-4, 2005.
[17] J.-S. Ha, H.-J. Lee, S. W. Lee et al., “Reduction of dislocations in GaN films on AlN/sapphire templates using CrN nanoislands,” Applied Physics Letters, vol. 92, no. 9, pp. 091906-3, 2008.
[18] C. Lin, G. Yu, X. Wang et al., “Improved GaN film overgrown with a molybdenum nanoisland mask,” Applied Physics Letters, vol. 93, no. 3, pp. 031906-3, 2008.
[19] H. Goto, S. W. Lee, H. J. Lee et al., “Chemical lift-off of GaN epitaxial films grown on c-sapphire substrates with CrN buffer layers,” physica status solidi (c), vol. 5, no. 6, pp. 1659-1661, 2008.
[20] M. Kureishi, R. Ohkubo, M. Hosoya et al., "Development of low damage mask making process on EUV mask with thin CrN buffer layer." pp. 158-167.
[21] J. S. Park, T. Minegishi, S. H. Lee et al., “Effects of interfacial layer structures on crystal structural properties of ZnO films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 26, no. 1, pp. 90-96, 2008.
[22] Wookhyun Lee, Seogwoo Lee, Hiroki Goto et al., “Novel buffer layer for the growth of GaN on c-sapphire,” physica status solidi (c), vol. 3, no. 6, pp. 1388-1391, 2006.
[23] X. Q. Shen, M. Shimizu, H. Okumura et al., “Characterizations of GaN films and AlGaN/GaN heterostructures on vicinal sapphire (0001) substrates grown by MOCVD,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2853-2856, 2009.
[24] X. Q. Shen, M. Shimizu, H. Okumura et al., “Comparison of surface morphologies in GaN films grown by rf-MBE and MOCVD on vicinal sapphire (0001) substrates,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2049-2053, 2009.
[25] Y. S. Won, J. Lee, C. S. Kim et al., “Computational study of adsorption, diffusion, and dissociation of precursor species on the GaN (0001) surface during GaN MOCVD,” Surface Science, vol. 603, no. 4, pp. L31-L34, Feb, 2009.
[26] A. Majid, M. Israr, J. J. Zhu et al., “Effect of beta-irradiation on photoluminescence of MOCVD grown GaN,” Journal of Materials Science-Materials in Electronics, vol. 20, no. 1, pp. 14-16, Jan, 2009.
[27] E. Arslan, M. K. Ozturk, S. Ozcelik et al., “The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si(111) substrates by MOCVD,” Current Applied Physics, vol. 9, no. 2, pp. 472-477, 2009.
[28] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov et al., “Electrical properties and deep traps spectra in undoped M-plane GaN films prepared by standard MOCVD and by selective lateral overgrowth,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2923-2925, 2009.
[29] Y. Xing, J. Han, J. Deng et al., “Investigation of GaN layer grown on different low misoriented sapphire by MOCVD,” Applied Surface Science, vol. 255, no. 12, pp. 6121-6124, 2009.
[30] W. E. Fenwick, A. Melton, T. Xu et al., “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si (111) using a thin Al[sub 2]O[sub 3] interlayer,” Applied Physics Letters, vol. 94, no. 22, pp. 222105-3, 2009.
[31] C. Bayram, N. Pere-laperne, R. McClintock et al., “Pulsed metal-organic chemical vapor deposition of high-quality AlN/GaN superlattices for near-infrared intersubband transitions,” Applied Physics Letters, vol. 94, no. 12, pp. 121902-3, 2009.
[32] T. Shioda, M. Sugiyama, Y. Shimogaki et al., “Selective area metal-organic vapor-phase epitaxy of InN, GaN and InGaN covering whole composition range,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2809-2812, 2009.
[33] A. Adikimenakis, S. L. Sahonta, G. P. Dimitrakopulos et al., “Effect of AlN interlayers in the structure of GaN-on-Si grown by plasma-assisted MBE,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2010-2015, 2009.
[34] K. A. Bertness, A. Roshko, L. M. Mansfield et al., “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” Journal of Crystal Growth, vol. 310, no. 13, pp. 3154-3158, 2008.
[35] C. W. Chin, Z. Hassan, and F. K. Yam, “RF-MBE GROWTH OF GaN ON SAPPHIRE FOR GAS SENSING APPLICATION,” Journal of Nonlinear Optical Physics & Materials, vol. 17, no. 4, pp. 435-442, Dec, 2008.
[36] K. Kato, K. Kishino, H. Sekiguchi et al., “Overgrowth of GaN on Be-doped coalesced GaN nanocolumn layer by rf-plasma-assisted molecular-beam epitaxy--Formation of high-quality GaN microcolumns,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2956-2961, 2009.
[37] A. Kawaharazuka, T. Yoshizaki, K. H. Ploog et al., “Growth of GaN with warm ammonia by molecular beam epitaxy,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2025-2028, 2009.
[38] G. Q. Lin, Y. P. Zeng, X. L. Wang et al., “Influence of AlN Buffer Thickness on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia,” Chinese Physics Letters, vol. 25, no. 11, pp. 4097-4100, Nov, 2008.
[39] T. Ohachi, N. Yamabe, H. Shimomura et al., “Measurement of nitrogen atomic flux for RF-MBE growth of GaN and AlN on Si substrates,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2987-2991, 2009.
[40] M. Sawadaishi, S. Taguchi, K. Sasaya et al., “Nitridation of (111)Al substrates for GaN growth by molecular beam epitaxy,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1994-1996, 2009.
[41] J. Seo, S. Hasegawa, and H. Asahi, “Effects of morphologies on the field emission characteristics of GaN nanorods grown on Si (0001) by MBE,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2977-2981, 2009.
[42] H. Tang, S. Rolfe, F. Semond et al., “Mechanisms of ammonia--MBE growth of GaN on SiC for transport devices,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2091-2095, 2009.
[43] A. P. Vajpeyi, A. O. Ajagunna, G. Tsiakatouras et al., “Spontaneous growth of III-nitride nanowires on Si by molecular beam epitaxy,” Microelectronic Engineering, vol. 86, no. 4-6, pp. 812-815, 2009/6//, 2009.
[44] T. Yamaguchi, D. Muto, T. Araki et al., “Growth and characterization of N-polar and In-polar InN films by RF-MBE,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2780-2782, 2009.
[45] R. K. Waits, “Planar magnetron sputtering,” Journal of Vacuum Science and Technology, vol. 15, no. 2, pp. 179-187, 1978.
[46] C.Y. Chang and S.M. Sze, “ULSI Technology,” The Mc Graw Hill Companies Inc, pp. 380, 1996.
[47] J.L. Vossen and J.J. Cuomo In: J.L. Vossen and W. Kern, “Thin Film Processes,” Academic Press, pp. 24, 1978.
[48] S. I. Shah, “Handbook of Thin Film Process Technology ” Institute of Physics Publishing, pp. A3.0.1, 1995.
[49] S. M. Sze, “VLSI Technology,” The Mc Graw Hill Companies Inc, pp. 387, 1988.
[50] H.-J. Lee, J.-S. Ha, H.-J. Lee et al., “Hydride vapor phase epitaxy of GaN on the vicinal c-sapphire with a CrN interlayer,” Journal of Crystal Growth, vol. 311, no. 3, pp. 470-473, 2009.
[51] W. H. Lee, I. H. Im, T. Minegishi et al., “Structural properties of CrN buffers for GaN growth,” Journal of the Korean Physical Society, vol. 49, no. 3, pp. 928-933, Sep, 2006.
[52] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Japanese Journal of Applied Physics, vol. 30, no. Part 2, No. 10A, pp. L1705, 1991.
[53] T. J. Baker, B. A. Haskell, F. Wu et al., “Characterization of Planar Semipolar Gallium Nitride Films on Sapphire Substrates,” Japanese Journal of Applied Physics, vol. 45, no. 6, pp. L154, 2006.
[54] A. Kikuchi, H. Hoshi, and K. Kishino, “Effects of V/III supply ratio on improvement of crystal quality of zincblende GaN grown by gas source molecular beam epitaxy using RF-radical nitrogen source,” Journal of Crystal Growth, vol. 150, no. Part 2, pp. 897-901, 1995.
校內:2014-08-10公開