簡易檢索 / 詳目顯示

研究生: 張家偉
Chang, Chia-Wei
論文名稱: 應用於UWB Mode-1之快速切換頻率合成器
A Fast-Switching Frequency Synthesizer for UWB Mode-1 Applications
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 70
中文關鍵詞: 鎖相迴路頻率合成器跳頻UWB
外文關鍵詞: PLL, Synthesizer, Jumping Lock, UWB
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一般傳統快速鎖定頻率合成器中,鎖定時間大約落在幾個微秒附近,對於UWB系統來說,仍舊無法滿足需求。因此目前要符合UWB要求之頻率合成器架構大概可分為兩種,第一就是使用多個鎖相迴路與除頻器來產生所需的頻帶;另一種利用兩個或更少的鎖相迴路產生鎖定之頻率再搭配除頻器、混頻器與多工器來產生所有的頻帶,但此種方法系統往往較為複雜,對於整個系統來說,仍舊占了相當部分的面積與功率消耗。因此在本研究,將嘗試使用一種設計技巧來簡化電路的複雜度,並實現快速切換之頻率合成器,若實際量測可行,預計將可以推廣至完整頻段之UWB系統。實驗室之前提出一種跳頻鎖定之方法,藉由VCO與除頻器的適當控制,能讓不同頻段切換時消耗非常少的時間。
    在本論文中我們將使用跳頻鎖定的方法,使得切換加上鎖定的時間能夠小於10奈秒,符合了運用在UWB系統上。而我們就藉著此種技術來實作一個運用在UWB mode-1頻帶的鎖相迴路。在VCO部分我們做到了3.432、3.96以及4.488GHz等頻率的切換,其相位雜訊各為-120.1、-119.4及-120.7dBc/Hz。在電荷幫浦的電流設計大約為150微安培,預估製程變異大約+-5%,在模擬中我們把vctrl的部分設計在0.5~1.3V之間是可被接受的。在最後整個的PLL模擬中可看出鎖定時間小於10奈秒,也正符合了UWB系統的需求。
    此論文大致上分為三個部分,第一部份介紹了UWB的技術背景以及其應用同時也闡明本論文之研究動機,第二部份探討鎖相迴路的基本架構,包含了相位檢測器、電流幫浦、低通濾波器、壓控振盪器、以及整數型的除頻器,簡介完這些架構之後,還有我們這次運用到的跳頻鎖定技術的概念以及電路設計實現的部份,第三部份就是討論模擬結果和部分量測結果的比較,及未來挑戰與設計上加強注意及改進的地方。

    The settling time for traditional fast-hopping frequency synthesizer is about several microseconds. It can’t conform to the UWB requirement. There are two types of frequency synthesizers for the UWB system at present. The first type is to use many PLLs and dividers to produce the center of frequency the band needed; the other is to use two or less PLLs with dividers, mixers and multiplexers to obtain all the center frequency of the bands. However, the method is not only complicated but also wastes plenty of area and power. In this study, therefore, we try to use a design scheme to simplify the circuit and realize a fast-switching frequency synthesizer. If the measurement results indicate this scheme practicable, it is expected to utilize such a scheme for the UWB system. We have proposed a method of jumping lock that could barely waste time between switching different bands by controlling the switching signal of VCO and divider appropriately.
    In the thesis, there is a method of jumping lock which enables the switching and locking time less than 10ns to fit for the UWB system. We design a PLL for UWB Mode-1 band by utilizing this technology. The VCO achieves the frequency switching among 3.432, 3.96 and 4.488GHz, and the phase noise are -120.1,-119.4 and -120.7dBc/Hz respectively. The charge pump current is about 150 with a variation of +-5%, and an acceptable Vctrl is designed between 0.5-1.3V. The simulation of PLL shows the locking time is less than 10ns which fits for the application of UWB system.
    The thesis can be divided into three parts. The first part is to introduce UWB technology background and application as well as our motivation. The second part is probed into the basics of PLL structure, including PFD, CP, LPF, VCO, prescaler and an integer type of frequency counter. After introducing the structure, the concepts of jumping lock technology and circuit design are shown. The third part is to discuss the difference between our simulation and measurement results, in the future. The challenges what we should pay attention to and improve in the future work is also been described.

    Chapter 1 Introduction 1 1-1 Background 1 1-1-1 Ultra-wideband Technology 1 1-1-2 Application 3 1-2 Motivation 5 1-3 Thesis Organization 5 Chapter 2 The principle of a PLL 7 2-1 PLL back ground 7 2-2 Principle of PLL sub-circuits 8 2-2-1 Phase Frequency Detector (PFD) 8 2-2-2 Charge Pump (CP) and Loop Filter 9 2-2-3 Voltage Controlled Oscillator (VCO) 10 2-2-4 Divider and programmable counter 11 2-3 Linear model of a PLL 12 2-3-1 Transfer function 12 2-3-2 Stability issues 16 2-3-3 Transient response 20 2-4 Jumping lock 22 Chapter 3 Design of a PHASE-LOCKED LOOP 24 3-1 Design flow 24 3-2 Circuit structure 25 3-3 Phase and frequency detector 25 3-4 Charge pump 28 3-5 Low pass filter 31 3-6 Voltage Controlled Oscillator 32 3-7 Divider 36 3-7-1 Divide-by-2 CML structure 36 3-7-2 Programmable counter 39 3-8 Layout and photo of PLL 40 Chapter 4 Simulation Results of the designed PLL 42 4-1 Introduction 42 4-2 Simulation of a PLL sub-circuits 42 4-2-1 Phase/Frequency detector 42 4-2-2 Charge pump and low pass filter 46 4-2-3 VCO 48 4-2-4 Divider and Programmable counter 52 4-3 PLL system simulation 55 4-4 Performance summary of the PLL design 58 Chapter 5 Measurement Results 59 5-1 Measurement Considerations 59 5-2 VCO power spectrum 60 5-3 Tuning range of VCO 61 5-4 Phase noise of VCO 63 5-5 Discussion and conclusion 64 Chapter 6 Conclusions and Future work 66 6-1 Conclusions 66 6-2 Future work 66 Reference 68

    [1] http://www.ieee802.org/15/pub/TG3a.html
    [2] K. SiwiaK and D.McKeown, Ultra-wideband Radio Technology, John Wiley & Sons, 2004.
    [3] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system.”IEEE Microwave Mag, vol. 4, pp. 36-47, Feb. 2003.
    [4] P. Heydari, “A study of low-power ultra wideband radio transceiver architectures.” in IEEE Wireless Communications & Networking Conference (WCNC), vol. 2, pp. 758-763, Mar 2005.
    [5] T. –Y. Lu and W. –Z. Chen, “A 3-to-10 GHz 14-band CMOS frequency synthesizer with spurs reduction for MB-OFDM UWB system,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC ’08), Feb. 2008, pp.126-127.
    [6] T. –H. Huang and J. –L. Wang, “New frequency plan and reconfigurable 6.6/7.128 GHz CMOS quadrature VCO for MB-OFDM UWB application,” in IEEE Int. Microwave Symp.(IMS’07), Jun. 2007, pp.843-846.
    [7] C. –W. Lo and H. C. Luong, “A 1.5-V 900-MHz Monolithic CMOS fast-switching frequency synthesizer for wireless applications,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 459-470, Apr. 2002.
    [8] H.-I. Lee et al., “A Σ-fractional-N frequency synthesizer using a wide-band integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp.1164-1169, Jul. 2004.
    [9] S. –H. Jang et al., “A fast switching full-CMOS PHS frequency synthesizer with an auxiliary coarse tuning method,” in 32nd European Solid-State Circuit Conf. (ESSCIRC 2006), Sept. 2006, pp.94-97.
    [10] J. Pan and T. Yoshihara, “A fast lock phase-locked loop using a continuous-time phase frequency detector,” in IEEE Electron Devices and Solid-State Circuits Conf. (EDSSC2007), Dec. 2007, pp.393-396.
    [11] G. –Y. Tak, S. –B. Hyun, T. Y. Kang, B. G. Choi, and S. S. Park, “A 6.3 –9-GHz CMOS fast settling PLL for MB-OFDM UWB Applications,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp.1671-1679, Aug. 2005.
    [12] 高曜煌著, “射頻鎖相迴路IC 設計,”滄海書局, 民國94 年
    [13] J. Rogers, C. Plett, and F. Dai, Integrated circuit design for high-speed frequencysynthesizer, Norwood, MA: Artech House, Inc., 2006.
    [14] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. Custom Integrated Circuits Conf. (CICC), May 1998, pp. 555-558.
    [15] W. B.Wilson, U. –K.Moon, K. R. Lakshmikumar, and L. Dai, “A CMOS self-calibrating frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437-1444, Oct. 2000.
    [16] N.H.E Weste, K.Eshraghian, CMOS VLSI 設計原理, 黃淑娟(編譯), 偉明圖書有限公司, 1999
    [17] G. B. Lee, P. K. Chan and L. Siek, “A CMOS Phase Frequency Detector for Charge Pump Phase-Locked Loop, ” in 42nd Midwest Symposium on Circuits and Systems, vol. 2, Aug. 1999, pp. 601 –604.
    [18] S. O. Jeon, T. S. Cheung and W. Y. Choi, “Phase/frequency detectors for high-speed PLL applications”, Electronic Lett., vol. 34,no. 22, pp. 2120-2121, 1998.
    [19] Behzad Razavi, RF Microelectronics, Prentice-Hall, Inc., 1998.
    [20] T. C. Lee and K. J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application,” IEEE J. Solid-State Circuit, vol. 41, no. 6, pp. 1245-1252, Jun. 2006.
    [21] R. Mohanavelu and P. Heydari, “A Novel Ultra High-Speed Flip-Flop-Based Frequency Divider,” in IEEE Inte’l Symp. On Circuits and Systems, vol. 4, pp. 169-172, May 2004.
    [22] Wong, J.M.C.; Cheung, V.S.L.; Luong, H.C ,“A1-V 2.5-mW 5.2-GHz Frequency Divider in a 0.35-um CMOS Process”, in VLSI Circuits Digest of Technical Papers, 2002. Symposium, 13-15 June 2002 Page(s):190 – 193.
    [23] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J.Solid-State Circuits, vol. 24, no. 2, pp. 62-70, Feb. 1989.
    [24] M.-S. Hwang, J. Kim and D.-K. Jeong, "Reduction of pump current mismatch in charge-pump PLL," Electron. Lett.,vol. 45,no. 3, pp. 135-136, 2009.

    下載圖示 校內:2011-08-27公開
    校外:2011-08-27公開
    QR CODE