簡易檢索 / 詳目顯示

研究生: 謝明偉
Hsieh, Ming-Wei
論文名稱: 電鍍鈀銅合金與其催化甲醇電氧化上的應用
Electrodeposition of PdCu alloy and its catalytic application in methanol electro-oxidation
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 101
中文關鍵詞: 電沉積鈀銅合金氧化還原置換甲醇氧化
外文關鍵詞: Electrodeposition, PdCu alloy, Redox replacement, Methanol oxidation
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電沉積的方法,在銦錫氧化物摻雜的導電玻璃上製備鈀銅合金,並利用該合金於甲醇電氧化反應的催化上。我們的方法包括:定電位共鍍鈀銅金屬、添加錯合劑三乙醇胺於鈀銅的電鍍液,以及在鈀銅合金的表面上透過氧化還原置換出銅原子,並修飾上鈀原子。
    鈀銅合金的相結構、組成以及表面樣貌,分別透過X光繞射儀、X光能譜散佈分析儀以及掃瞄式電子顯微鏡進行分析。X光繞射顯示出鈀銅合金因為在鍍液中含有三乙醇胺而電鍍出之粒徑有變小的現象。縮小之粒徑對於合金粒子的表面積具有增大的效果。電化學性質方面,我們透過循環伏安法來分析鈀銅合金,及其經過鈀原子的氧化還原置換修飾,在催化甲醇電氧化能力上的區別。實驗結果顯示出,在含有銅原子比17.75 %的鈀銅合金中具有最佳的甲醇氧化效率,同時也優於純鈀的催化能力。在電鍍的過程中鍍液含有三乙醇胺,以其透過鈀原子的氧化還原置換的步驟,透過在過氯酸溶液的循環伏安掃描中,發現對於提升鈀銅合金的電化學表面積有幫助,同時也說明了該二方法對於甲醇電氧化的效率提升的原因。

    This study demonstrates a simple electrodeposition method to fabricate the palladium-copper alloy on an ITO coated glass (PdCu/ITO) and its application in methanol electro-oxidation. Our approaches involve the co-reduction of Pd and Cu using triethanolamine (TEA) in the electroplating bath and a Pd redox replacement of Cu on the surface of the as-prepared PdCu alloy. The phase structures, alloy compositions and morphologies of catalysts are determined by X-ray diffraction, energy dispersive spectrometer and scanning electron microscope, respectively. X-ray diffraction shows that the particle size of PdCu deposit shrinks when the alloy is deposited in a TEA-contained solution. The decrease in particle size is beneficial to the increase of the surface area of the alloys. The electrocatalytic properties of PdCu alloys and Pd redox replacement modified PdCu alloys for methanol oxidation have been investigated by cyclic voltammetry. The PdCu alloy with atomic ratio of 17.75 % Cu exhibits higher catalytic activity toward methanol oxidation compared with a pure Pd catalyst. PdCu alloys with higher electrochemical surface areas associated with TEA agent and the surface confined Pd replacement are found by CV experiments to have enhanced catalytic performance in the electro-oxidation of methanol.

    Acknowledgement I Chinese abstract II Abstract III Contents IV List of figures VII List of tables XI Chapter 1 Introduction 1 1.1 Background of fuel cells 1 1.1.1 From the gas battery to the fuel cell 1 1.1.2 What makes up a fuel cell? 2 1.2 Direct Methanol Fuel Cells (DMFCs) 4 1.2.1 Introduction to DMFC 4 1.2.2 Reactions in DMFC 4 1.2.3 The anodic oxidation of methanol 6 1.2.4 Overpotential in fuel cells 7 1.2.5 Open-circuit potential of the oxygen electrode 10 Chapter 2 Literature review and principles 12 2.1 Fundamentals of the electrocatalyst 12 2.1.1 The history 12 2.1.2 Electrocatalytic reaction 13 2.1.3 Catalysts in fuel cells 14 2.2 Experimental principles 17 2.2.1 Underpotential deposition (UPD) 17 2.2.2 Surface-Limited Redox Replacement (SLRR) 18 2.3 Instrumental principles 20 2.3.1 Chronoamperometry (CA) 20 2.3.2 Cyclic voltammetry (CV) 21 2.3.3 Electrochemical properties: hydrogen absorption and surface oxidation 23 2.3.4 X-ray diffraction (XRD) 24 2.3.5 Scanning electron microscope (SEM) 24 2.3.6 Energy-dispersive X-ray spectroscopy (EDS) 25 2.4 Study motivation and description 27 Chapter 3 Experimental methods and steps 29 3.1 Chemicals and instruments 29 3.2 Experimental methods and steps 30 3.2.1 Setup 30 3.2.2 Electroplating bath preparation 30 3.2.3 PdCu electrodeposition 31 3.2.4 Characterization 32 Chapter 4 Results and discussion 33 4.1 Influence of applying potentials to PdCu alloys 33 4.1.1 CVs of Pd2+ and Cu2+ solutions 33 4.1.2 XRD 37 4.1.3 Morphology 41 4.1.4 Composition analysis 44 4.1.5 Methanol electro-oxidation 45 4.2 Influence of deposition charge to PdCu alloys 48 4.2.1 Introduction 48 4.2.2 XRD 48 4.2.3 Composition analysis 54 4.2.4 Morphology 56 4.2.5 Electrochemical characterization 60 4.2.6 Methanol electro-oxidation 62 4.3 Influence of complexing agent to PdCu alloys 64 4.3.1 Introduction 64 4.3.2 UV-vis absorption spectra 64 4.3.3 CVs of Pd2+ and Cu2+ with different concentrations of TEA 66 4.3.4 XRD 69 4.3.5 Composition analysis 72 4.3.6 Morphology 73 4.3.7 Electrochemical characterization 76 4.3.8 Methanol electro-oxidation 77 4.4 PdCu redox replacement 79 4.4.1 Introduction: Pd redox replacement by pure Cu 79 4.4.2 Pd redox replacement by pure PdCu 82 4.4.3 XRD 84 4.4.4 Composition analysis 85 4.4.5 SEM 86 4.4.6 Methanol electro-oxidation 87 4.5 Addtional results 89 4.5.1 Influence of temperature to PdCu alloys 89 4.5.2 The redox replacement of PdCu alloys with Ru 90 Chapter 5 Conclusion 92 References 95 Appendix I: X-ray diffraction of pure ITO coated glass 100 Appendix II: Standard X-ray diffractions of Pd and Cu 101

    [1] K. Kordesch, G. Simader, Fuel Cells and Their Applications, New York: VCH, 1996.
    [2] E.K. Rideal, U.R. Evans, Trans. Faraday Soc. 17 (1922) 466.
    [3] M.K. Ewert, L.B. Johnson, Johnson Space Center's Role in a Sustainable Future, NASA/TM-2004-212069, 2004.
    [4] L.J.M.J. Blomen, M.N. Mugerwa, Fuel Cell Systems, New York: Plenum Press, 1993.
    [5] H. Liu, J. Zhang, Electrocatalysis of Direct Methanol Fuel Cells, Weinheim: Wiley-VCH, 2009.
    [6] S.C. Kelley, G.A. Deluga, W.H. Smyrl, Electrochem. Solid-State Lett. 3 (1999) 407.
    [7] Z.D. Wei, S.H. Chan, J. Electroanal. Chem. 569 (2004) 23.
    [8] G. Jerkiewicz, in: A. Wieckowski (Eds.), Interfacial Electrochemistry: Theory, Experiment, and Applications, New York: Marcel Dekker, 1999.
    [9] L.H. Jiang, G.Q. Sun, X.S. Zhao, Z.H. Zhou, S.Y. Yan, S.H. Tang, G.X. Wang, B. Zhou, Q. Xin, Electrochim. Acta 50 (2005) 2371.
    [10] Z.B. Wang, G.P. Yin, P.F. Shi, J. Power Sources 163 (2007) 688.
    [11] M. Gotz, H. Wendt, Eleotrochim. Acta 43 (1998) 3637.
    [12] A.S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, J. Power Sources 55 (1995) 159.
    [13] K.L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre, E.S. Smotkin, J. Electrochem. Soc. 144 (1997) 1543.
    [14] A. Oliveira-Neto, J. Perez, W.T. Napporn, E.A. Ticianelli, E.R. Gonzalez, J. Brazil. Chem. Soc. 11 (2000) 39.
    [15] H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 97 (1993) 12020.
    [16] H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 98 (1994) 617.
    [17] R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, M. Muhler, Electrochim. Acta 54 (2009) 4208.
    [18] S.R. Brankovic, J.X. Wang, R.R. Adzic, Electrochem. Solid-State Lett. 4 (2001) A217.
    [19] S.R. Brankovic, J.X. Wang, R.R. Adzic, Surf. Sci. 474 (2001) L173.
    [20] M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem. 229 (1987) 395.
    [21] M.L. Wang, W.W. Liu, C.D. Huang, Int. J. Hydrogen Energy 34 (2009) 2758.
    [22] G.L. Li, L.H. Jiang, Q.A. Jiang, S.L. Wang, G.Q. Sun, Electrochim. Acta 56 (2011) 7703.
    [23] Z. Yin, W. Zhou, Y.J. Gao, D. Ma, C.J. Kiely, X. H. Bao, Chem. Eur. J. 18 (2012) 4887.
    [24] Z.L. Liu, X.H. Zhang, S.W. Tay, J. Solid State Electrochem. 16 (2012) 545.
    [25] Y. Suo, I.M. Hsing, Electrochim. Acta 56 (2011) 2174.
    [26] L. Dai, S.Z. Zou, J. Power Sources 196 (2011) 9369.
    [27] W. Du, K.E. Mackenzie, D.F. Milano, N.A. Deskins, D. Su, X. Teng, ACS Catal. 2 (2012) 287.
    [28] C. Xu, Y. Liu, J. Wang, H. Geng, H. Qiu, J. Power Sources 199 (2012) 124.
    [29] N.C. Cheng, H.F. Lv, W. Wang, S.C. Mu, M. Pan, F. Marken, J. Power Sources 195 (2010) 7246.
    [30] A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, J. Mol. Catal. A: Chem. 115 (1997) 421.
    [31] V.R. Stamenkovic, B.S. Mun, P.N. Ross, K.J.J. Mayrhofer, N.M. Markovic, J. Am. Chem. Soc. 128 (2006) 8813.
    [32] T. Chierchie, C. Mayer, K. Ju. ttner and W. J. Lorenz, J. Electroanal. Chem. 191 (1985) 401.
    [33] D.M. Kolb, M. Przasnyski, H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.
    [34] H.B. Michaelson, J. Appl. Phys. 48, (1977) 4729.
    [35] J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Science 315 (2007) 220.
    [36] B. Coq, F. Figueras, J. Mol. Catal. A: Chem. 173 (2001) 117.
    [37] D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis. Brooks Cole, 2006.
    [38] D.C. Harris, Quantitative Chemical Analysis. W. H. Freeman, 2006.
    [39] M. Łukaszewski, A. Czerwiński, J. Solid State Electrochem. 12 (2008) 1589.
    [40] J.I. Goldstein, Scanning Electron Microscopy and X-ray Micronalysis, New York: Plenum Press, 2003.
    [41] T.R.L.C. Paixão, E.A. Ponzio, R. M. Torresi, M. Bertotti, J. Braz. Chem. Soc. 17 (2006) 374.
    [42] L.S. Jou, J.K. Chang, T.J. Whang, I.W. Sun, J. Electrochem. Soc. 156 (2009) D193.
    [43] R.F. Wang, B.X. Wei, H. Wang, S. Ji, J.L. Key, X.T. Zhang, Z.Q. Lei, Ionics 17 (2011) 595.
    [44] C.X. Xu, Y.Q. Liu, J.P. Wang, H.R. Geng, H.J. Qiu, ACS Appl. Mater. Inter. ACS Appl. Mater. Interfaces 3 (2011) 4626.
    [45] C.J. Huang, T.H. Meen, M.Y. Lai, W.R. Chen, Sol. Energy Mater. Sol. Cells 82 (2004) 553.
    [46] K. Kondo, N. Ishida, J. Ishihawa, T. Matsubara, J. Electrochem. Soc. 138 (1991) 3629.
    [47] C. Bianchini, P.K. Shen, Chem. Rev. 109 (2009) 4183.
    [48] J.S. Spendelow, A. Wieckowski, Phys. Chem. Chem. Phys. 9 (2007) 2654.
    [49] K.F. Blurton, E. McMullin, J. Electrochem. Soc. 116 (1969) 1476.
    [50] T.R. Soreta, J. Strutwolf, C. K. O’Sullivan, Langmuir 23 (2007) 10823.
    [51] J.C. Huang, Z.L. Liu, C.B. He, L.M. Gan, J. Phys. Chem. B 109 (2005) 16644.
    [52] O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya and K.I. Ota, Electrochem. Commun. 6 (2004) 105.
    [53] B. Tao, J. Zhang, S. Hui, X. Chen, L. Wan, Electrochim. Acta 55 (2010) 5019.
    [54] V. Pallassane, M. Neurock, L. Hansen, B. Hammer, J.K. Nørskow, Phys. Rev. B 60 (1999) 6141.
    [55] C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach, New York: Plenum Press, 1998.
    [56] A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43 (1991) 3161.
    [57] C.L. Green, A. Kucernak, J. Phys. Chem. B 106 (2002) 1036.
    [58] M. Neergat, V. Gunasekar, R. Rahul, J. Electroanal. Chem. 658 (2011) 25.
    [59] S. Trasatti, O.A. Petrii, J. Electroanal. Chem. 327 (1992) 353.
    [60] D.R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 85th edition, 2005.
    [61] T. Teranichi, M. Miyake, Chem. Mater. 10 (1998) 594.
    [62] R.N. Bhattacharya, J. Electrochem. Soc. 130 (1983) 2041.
    [63] R.N. Bhattacharya, A.M. Fernandez, Solar Energy Mater. 76 (2003) 331.
    [64] S.M. Tumaini, K.M. Mkhulu, C. Ignacy, Langmuir 26 (2010) 570.
    [65] J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, J. Chem. Phys. 120 (2004) 10240.
    [66] K. Brandt, M. Steinhausen, K. Wandelt, J. Electroanal. Chem. 616 (2008) 27.
    [67] B. Hammer, J.K. Nørskov, Surf. Sci. 343 (1995) 211.
    [68] F. Fouda-Onana, O. Savadogo, Electrochim. Acta 54 (2009) 1769.

    下載圖示 校內:2017-11-20公開
    校外:2017-11-20公開
    QR CODE