| 研究生: |
楊仁豪 Yang, Jen-Hao |
|---|---|
| 論文名稱: |
鋰含量和攝氧量對單晶富鎳LiNi0.8Mn0.1Co0.1O2正極電化學性能提升之研究 Significance of Li Content and Oxygen Uptake on Performance Single-Crystal LiNi0.8Mn0.1Co0.1O2 |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 鋰離子電池 、正極 、單晶 、高鎳三元材料 、衰退機制 |
| 外文關鍵詞: | lithium-ion battery, cathode, single crystal, high-nickel ternary material, degradation mechanism |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
2. Thackeray, M.M., et al., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
3. Van der Ven, A. and G. Ceder, Electrochemical properties of spinel Li x CoO 2: A first-principles investigation. Physical Review B, 1999. 59(2): p. 742.
4. Rossen, E., J. Reimers, and J. Dahn, Synthesis and electrochemistry of spinel LT LiCoO2. Solid State Ionics, 1993. 62(1-2): p. 53-60.
5. Ohzuku, T. and R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources, 2007. 174(2): p. 449-456.
6. David, W., et al., Lithium insertion into β MnO2 and the rutile-spinel transformation. Materials research bulletin, 1984. 19(1): p. 99-106.
7. Kebede, M.A., et al., Structural and electrochemical properties of aluminium doped LiMn2O4 cathode materials for Li battery: experimental and ab initio calculations. Sustainable Energy Technologies and Assessments, 2014. 5: p. 44-49.
8. Thackeray, M., M. Mansuetto, and J. Bates, Structural stability of LiMn2O4 electrodes for lithium batteries. Journal of power sources, 1997. 68(1): p. 153-158.
9. Ozoemena, K.I. and M. Kebede, Next-generation nanostructured lithium-ion cathode materials: critical challenges for new directions in R&D. Nanomaterials in Advanced Batteries and Supercapacitors, 2016: p. 1-24.
10. Luo, C., Investigation on the phase stability and defect structure of Li-Mn-O and Li-Me-Mn-O spinel (Me= Mg, Ni, Co). 2005, Aachen, Techn. Hochsch., Diss., 2005.
11. Xia, Y., Y. Zhou, and M. Yoshio, Capacity fading on cycling of 4 V Li/LiMn2 O 4 cells. Journal of The Electrochemical Society, 1997. 144(8): p. 2593.
12. Gummow, R., A. De Kock, and M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994. 69(1): p. 59-67.
13. Thackeray, M.M., Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 1997. 25(1-2): p. 1-71.
14. Ellis, B.L., K.T. Lee, and L.F. Nazar, Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials, 2010. 22(3): p. 691-714.
15. Shin, Y. and A. Manthiram, Factors influencing the capacity fade of spinel lithium manganese oxides. Journal of the Electrochemical Society, 2004. 151(2): p. A204.
16. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources, 1999. 81: p. 472-479.
17. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
18. Martinez, S., et al., Chemical vs. electrochemical extraction of lithium from the Li-excess Li 1.10 Mn 1.90 O 4 spinel followed by NMR and DRX techniques. Physical Chemistry Chemical Physics, 2014. 16(7): p. 3282-3291.
19. Tong, Q., et al., Synthesis and storage performance of the doped LiMn2O4 spinel. Journal of the Electrochemical Society, 2007. 154(7): p. A656.
20. Oh, S.-W., et al., Improvement of electrochemical properties of LiNi0. 5Mn1. 5O4 spinel material by fluorine substitution. Journal of power sources, 2006. 157(1): p. 464-470.
21. Manthiram, A., K. Chemelewski, and E.-S. Lee, A perspective on the high-voltage LiMn 1.5 Ni 0.5 O 4 spinel cathode for lithium-ion batteries. Energy & Environmental Science, 2014. 7(4): p. 1339-1350.
22. Strobel, P., et al., Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sciences, 2003. 5(7): p. 1009-1018.
23. Zhang, X., et al., Facile polymer-assisted synthesis of LiNi 0.5 Mn 1.5 O 4 with a hierarchical micro–nano structure and high rate capability. Rsc Advances, 2012. 2(13): p. 5669-5675.
24. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997. 144(4): p. 1188.
25. Zhu, J., Synthesis, characterization and performance of cathodes for lithium ion batteries. 2014, UC Riverside.
26. Prosini, P.P., et al., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid state ionics, 2002. 148(1-2): p. 45-51.
27. Chung, S.-Y., J.T. Bloking, and Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials, 2002. 1(2): p. 123-128.
28. Begam, K., M. Michael, and S. Prabaharan, NASICON Open Framework Structured Transition Metal Oxides for Lithium Batteries. 2010.
29. Mueller, T., et al., Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chemistry of materials, 2011. 23(17): p. 3854-3862.
30. Barpanda, P., et al., A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature materials, 2011. 10(10): p. 772-779.
31. Reynaud, M., et al., Synthesis and crystal chemistry of the NaMSO4F family (M= Mg, Fe, Co, Cu, Zn). Solid state sciences, 2012. 14(1): p. 15-20.
32. Ati, M., et al., Structural and electrochemical diversity in LiFe(1-delta)Zn(delta)SO4F solid solution: a Fe-based 3.9 V positive-electrode material. Angew Chem Int Ed Engl, 2011. 50(45): p. 10574-7.
33. Julien, C.M., et al., Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2014. 2(1): p. 132-154.
34. Kraytsberg, A. and Y. Ein‐Eli, Higher, Stronger, Better… ︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries. Advanced Energy Materials, 2012. 2(8): p. 922-939.
35. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
36. Gupta, R. and A. Manthiram, Chemical extraction of lithium from layered LiCoO2. Journal of Solid State Chemistry, 1996. 121(2): p. 483-491.
37. Amatucci, G., J. Tarascon, and L. Klein, CoO2, the end member of the Li x CoO2 solid solution. Journal of The Electrochemical Society, 1996. 143(3): p. 1114.
38. Ohzuku, T. and A. Ueda, Solid‐state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. Journal of The Electrochemical Society, 1994. 141(11): p. 2972.
39. Yamada, S., M. Fujiwara, and M. Kanda, Synthesis and properties of LiNiO2 as cathode material for secondary batteries. Journal of Power Sources, 1995. 54(2): p. 209-213.
40. Ohzuku, T., A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society, 1993. 140(7): p. 1862.
41. Rougier, A., P. Gravereau, and C. Delmas, Optimization of the composition of the Li1− z Ni1+ z O 2 electrode materials: structural, magnetic, and electrochemical studies. Journal of The Electrochemical Society, 1996. 143(4): p. 1168.
42. Bruce, P., A. áRobert Armstrong, and R. Gitzendanner, New intercalation compounds for lithium batteries: layered LiMnO 2. Journal of Materials Chemistry, 1999. 9(1): p. 193-198.
43. Armstrong, A., A. Robertson, and P. Bruce, Structural transformation on cycling layered Li (Mn1− yCoy) O2 cathode materials. Electrochimica Acta, 1999. 45(1-2): p. 285-294.
44. Noh, H.-J., et al., Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013. 233: p. 121-130.
45. Sun, Y.-K., et al., High-energy cathode material for long-life and safe lithium batteries. Nature materials, 2009. 8(4): p. 320-324.
46. Liu, W., et al., Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angewandte Chemie International Edition, 2015. 54(15): p. 4440-4457.
47. Myung, S.-T., et al., Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Letters, 2017. 2(1): p. 196-223.
48. Yan, P., et al., Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature energy, 2018. 3(7): p. 600-605.
49. Arora, P., R.E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium‐ion batteries. Journal of the Electrochemical Society, 1998. 145(10): p. 3647.
50. Jung, R., et al., Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. Journal of The Electrochemical Society, 2017. 164(7): p. A1361.
51. Jung, R., et al., Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells. Journal of the electrochemical society, 2019. 166(2): p. A378-A389.
52. Kim, N.Y., et al., Microstructural study on degradation mechanism of layered LiNi0. 6Co0. 2Mn0. 2O2 cathode materials by analytical transmission electron microscopy. Journal of power sources, 2016. 307: p. 641-648.
53. Kim, J., et al., Prospect and reality of Ni‐rich cathode for commercialization. Advanced energy materials, 2018. 8(6): p. 1702028.
54. Li, J., et al., Comparison of single crystal and polycrystalline LiNi0. 5Mn0. 3Co0. 2O2 positive electrode materials for high voltage Li-ion cells. Journal of The Electrochemical Society, 2017. 164(7): p. A1534.
55. Hu, Y., X. Zhao, and Z. Suo, Averting cracks caused by insertion reaction in lithium–ion batteries. Journal of Materials Research, 2010. 25(6): p. 1007-1010.
56. Zheng, S., et al., Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019. 412: p. 336-343.
57. Ravnsbæk, D.B., et al., Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano letters, 2014. 14(3): p. 1484-1491.
58. Bak, S.-M., et al., Structural changes and thermal stability of charged LiNi x Mn y Co z O2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS applied materials & interfaces, 2014. 6(24): p. 22594-22601.
59. Fang, H., et al., High performance LiNi0. 5Mn1. 5O4 cathode materials synthesized by a combinational annealing method. Electrochemistry communications, 2007. 9(5): p. 1077-1082.
校內:2028-08-29公開