簡易檢索 / 詳目顯示

研究生: 黃亞婷
Huang, Ya-Ting
論文名稱: 地形座標系統在可侵蝕底床潰壩剪力流之應用
Application of Unified Coordinate System to Dam-Break Shear Flows over Erodible Bed
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 潰壩剪力流可侵蝕底床地形座標系統土石流
外文關鍵詞: dam-break shear flow, erodible bed, Unified Coordinate System, debris flow
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當顆粒鬆散的底床上發生潰壩時,由於侵蝕的發生會帶走底床上的土石;而當流體流速減緩或地形變化,土石亦會堆積於底床上。無論是侵蝕或堆積,底床會受流動層及底床層之含砂量變化而影響其演變。在本研究中,我們將流體分成上層清水層以及下層水砂混合層,而底床為水砂混合所構成之可侵蝕底床;其中我們將水砂混合層視為一層剪力層,且具備與底床不同的泥砂濃度。由於侵蝕或堆積的作用,底床隨時間劇烈變動,為能詳加探討底床演變對流體動態行為的影響。本研究透過地形座標系統 (Tai and Kuo, 2008; Tai et al. 2012) 來描述潰壩剪力流在可侵蝕底床上之動態行為,結合Non-Oscillation Central (NOC) 非震盪中央差分數值方法模擬理想狀況下發生潰壩時若底床為可侵蝕的流況,並探討不同的底床與流體泥砂濃度分布對流況及侵蝕堆積現象之影響。

    When the dam-break flow occurs at the loose bed, due to the erosion, the sediment of the erodible bed will be taken away. Since the decreasing flow velocity and the influence of the topography, the sediment will be deposited on the bed. Either in erosion or by deposition, the basal surface evolves due to the sediment exchange through the interface between the flowing layer and the stagnant bed. In the present study, we combine a sharp-capturing, Riemann-solver-free non- oscillation central (NOC) scheme with Unified Coordinate method to describe the development of dam-break shear flow on deforming basal surface, and to discuss the influence of sediment concentration distribution of the bed and the flowing layer on erosion and the deposition. Consider a three-layer structure along the flow thickness, where a pure-water layer lies above a mixture layer of water and grains, and they flows over a water-saturated granular substratum. We postulate that the mixture transport layer is sheared and exhibits a discontinuity of sediment concentration at the interface between the mixture layer and the substratum. The numerical results show that our postulation is more consistent with the analysis of experiment.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究背景 2 1.2.1 潰壩形成原因與種類 2 1.2.1 土石流發展條件 5 1.3 文獻回顧 6 1.4 論文架構 11 第二章 理論 13 2.1 流場架構 13 2.2 控制方程式 16 2.2.1 質量守恆 17 2.2.2 動量守恆 23 2.3 侵蝕率 27 2.4 本章小結 32 第三章 座標系統與數值模擬 35 3.1 座標系統 35 3.1.2 變動曲面座標系統 35 3.1.2 地形座標系統 36 3.1.3 控制方程式套用地形座標系統 38 3.2 數值方法 43 第四章 結果與討論 47 4.1 不可侵蝕底床 47 4.2 可侵蝕底床 51 4.2.1 不同濃度分布 53 4.2.2 不同濃度比例 55 4.2.3 不同速度分布 58 4.3 與實驗比較 62 第五章 結論與建議 65

    [1] F. Bouchut, A. Mangeney-Castelnau, B. Perthame and J. P. Vilotte. “A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows.” C. R. Acad. Sci,. 336, pp. 531–536, 2003.
    [2] F. Bouchut and M. Westdickenberg. “Gravity driven shallow water models for arbitrary topography.” Commun. Math. Sci., 2, pp. 359-389, 2004.
    [3] P. Brufau and P. Garcia-Navarro. “Two-dimensional dam break flow simulation.” Int. J. Numer. Meth. Fluids, 33: pp. 35–57, 2000.
    [4] V. T. Chow. ”Open-channel Hydraulics.” McGraw-Hill Book Company, 1973.
    [5] J. J. Dong, Y. S. Li, C. Y. Kuo, R. T. Sung, M. H. Li, C. T. Lee, C. C. Chen and W. R. Lee. “The formation and breach of a short‐lived landslide dam at Hsiaolin Village, Taiwan—Part I: Post‐event reconstruction of dam geometry.” Engineering Geology, 123, pp. 40-59, 2011.
    [6] L. Fraccarollo and E. F. Toro. “Experimental and numerical assessment of the shallow water model for two-dimensional dam-break problems.” J. hydraul. research, 33, pp. 843–864, 1995.
    [7] L. Fraccarollo and H. Capart. “Riemann wave description of erosional dam- break flows.” J. Fluid Mech., pp. 183-228, 2002.
    [8] W. H. Hui, P. Y. Li and Z. W. Li. “A unified coordinate system for solving the two-dimensional Euler equations.” Journal of Computational Physics, 153, pp. 596-637, 1999.
    [9] W. H. Hui, and S. Koudriakov. “The role of coordinates in the computation of discontinuities in one-dimensional flow.” Computational Fluid Dynamics Journal, 8, pp. 495-510, 2000.
    [10] W. H. Hui. “A unified coordinates approach to computational fluid dynamics.” Journal of computational and applied mathematics, 163, pp. 15-28, 2004.
    [11] W.H. Hui. “The Unified Coordinate System in Computational Fluid Dynamics.” Commun. Comput. Phys., 2, pp. 577-610, 2007.
    [12] K. Hutter and K. Joehnk. “Continuum Methods of Physical Modeling.” Springer Verlag, 2004.
    [13] G. S. Jiang and E. Tadmor, “Nonoscillatory Central Schemes for Multidi- mensional Hyperbolic Conservation Laws.” SIAM J. Sci. Comput., 19, pp. 1892–1917, 1998.
    [14] T. W. Lambe and R. V. Whitman. “Soil Mechanics.” John Wiley, New York, 1969.
    [15] M. H. Li, R. T. Sung, J. J. Dong, C. T. Lee and C. C. Chen. “The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan — Part II: Simulation of debris flow with landslide dam breach.” Engineering Geology, 123, pp. 60-71, 2011.
    [16] I. Luca, K. Hutter, C. Y. Kuo and Y. C. Tai. “Two-layer models for shallow avalanche flows over arbitrary variable topography.” Int. J. Adv. Eng. Sci. Appl. Math. (AESAM), 1, pp. 99-121, 2009.
    [17] G. R. Powledge, D. C. Ralston, P. Miller, Y. H. Chen, P. E. Clopper and D. M. Temple. “Mechanics of Overflow Erosion on Embankments.” J. Hydraul. Eng., 115, pp. 1056-1075, 1989.
    [18] D. Pritchard and A. J. Hogg. “On sediment transport under dam-break flow.” J. Fluid Mech., 473, pp. 265-274, 2002.
    [19] A. Ritter, “The propagation of water waves.” Z. Verein. Deutsch. Ing, 36, pp. 947-954, 1892.
    [20] V. S. Rao, and G. Latha. “A slope modification method for shallow water equations.” Int. J. Numer Methods in Fluids, 14, pp. 189-196, 1992.
    [21] I. Shugan, H. H. Hwung and R.Y. Yang. “Breaking Tsunami Run-up on the Plane Beach.” Proceedings of the 2010 International Workshop on Operating System for Marine Environment Monitoring and ForecastingCollege of Ocean Engineering, pp. 64-73, 2010.
    [22] B. Spinewine and H. Capart “Intense bed-load due to a sudden dam- break.” J. Fluid Mech., 731, pp. 579-614, 2013.
    [23] P. K. Stansby, A. Chegini and T. C. Barnes. “The initial stages of dam- break flow.” J. Fluid Mech., 374, pp. 407-424, 1998.
    [24] J. J. Stoker. “Water Waves: The Mathematical Theory with Applications.” Whiley Interscience, 1957.
    [25] B. M. Sumer, A. Kozakiewicz, J. Fredsoe and R. Deigaard, “Velocity and concentration profiles in sheet-flow layer of movable bed.” J. Hydraul. Eng., 122, pp. 549-558, 1996.
    [26] T. Takahashi. “Debris flow.” Balkema. Rotterdam, pp. 1-165, 1991.
    [27] Y. C. Tai, S. Noelle and J.M.N.T Gray. “An Application of Non oscilla- tory Central (NOC) Scheme to Shock Formation in Rapid Granular Flows.” The 6th Asian Computational fluid dynamics Conference, 2005.
    [28] Y. C. Tai and C. Y. Kuo. “A New Model of Granular Flows over General Topography with Erosion and Deposition.” Acta Mechanica, 71-96, 2008.
    [29] Y. C. Tai, S. Noelle, J.M.N.T. Gray and K. Hutter. “Shock-Capturing and Front Tracking Methods for Granular Avalanches.” Journal of Computa- tional Physics, pp. 269–301, 2002.
    [30] Y. C. Tai, and C. Y. Kuo. “Modelling shallow debris flows of the Coulomb mixture type over temporally varying topography.” Nat. Hazards Earth Syst. Sci., pp. 269– 280, 2012.
    [31] Y. C. Tai, C. Y. Kuo, and W. H. Hui. “An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature.” Geophysical & Astrophysical Fluid Dynamics, pp. 596-629, 2012.
    [32] J. S. Wang, H. G. Ni, and Y. S. He,(2000). “Finite-difference TVD scheme for computation of dam-break problems.” J. Hydraul. Eng.126, pp. 253–262, 1977.
    [33] 吳瑞賢 “天然災害防治導論.” 全華科技圖書, 2006.
    [34] 周昌利、蔡明君 “農田水利自然災害防治-邊坡災害防治.” 2012中日農業水利研討會, 2012.
    [35] 郭振泰 “台灣的洪水災害.” 地球科學園地, No.7,地球科學文教基金會, 1998.
    [36] 陳宏宇“土石流.” 地球科學園地, No.6, 地球科學文教基金會, 1998.
    [37] 曾文孝“土石流及其過度行為之數值研究.” 國立成功大學水利及海洋工程學系碩士論文, 2002.
    [38] 曾文孝“防砂壩於洪水事件中潰壩導致河床變動之研究.” 國立成功大學水利及海洋工程學系博士論文, 2012.
    [39] 曾皇銘“小林村潰壩研究.” 國立成功大學水利及海洋工程學系碩士論文, 2011.
    [40] 盧艾偉“應用等位函數法模擬潰壩時自由液面及流場的演變.” 國立成功大學水利及海洋工程學系碩士論文, 2008.
    [41] 劉哲欣、吳亭燁、陳聯光、林聖琪、林又青、陳樹群、周憲德. “台灣地區重大岩體滑動案例之土方量分析.” 中華水土保持學報, 42, pp. 150-159, 2011.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE