| 研究生: |
陳家羚 Chen, Jia-Ling |
|---|---|
| 論文名稱: |
湖泊型水庫沖刷渠道對排砂效率之影響分析 Analyzing the impact of flushing channel in a lake-type reservoir on sediment release efficiency |
| 指導教授: |
王筱雯
Wang, Hsiao-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 湖泊型水庫 、空庫排砂 、沖刷渠道 、排砂效率 、阿公店水庫 、SRH-2D |
| 外文關鍵詞: | lake-type reservoir, empty flushing, flushing channel, sediment release efficiency, Agongdian Reservoir, SRH-2D |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
興建水庫得以蓄存水資源,卻也阻斷了河流的泥砂傳輸,導致庫區淤積量逐年提升,亦縮短水庫使用年限。為求現有水庫的永續運轉,水庫排砂已成為全球水庫正共同面對的議題。
在眾多水庫排砂方式中,空庫排砂為排砂效率最高的方式之一(Chaudry, 2014),而峽谷型水庫又因地形條件較佳,可進一步提升排砂效率(Wang et al., 2020),湖泊型水庫則因地勢較緩且庫區寬廣,須仰賴更好的操作以減少沖刷渠道外之庫區淤積問題,以維持排砂效率。
阿公店水庫為台灣目前唯一持續進行空庫排砂之水庫,亦為國際上少數採用空庫排砂之湖泊型水庫。為了解阿公店水庫排砂過程中,沖刷渠道形貌演變及庫區泥砂運移情形,本研究使用SRH-2D水理及動床模式進行模擬,並探討短期、長期沖刷渠道工程情境下之排砂效率。
研究成果顯示沖刷渠道可加速排除來自濁水溪之高濃度入流,降低泥砂落淤之可能,且事件過後濁水溪及沖刷渠道沿程普遍為侵蝕,顯示在沖刷渠道之協助下,仍可達通砂、清除庫區既有淤積之排砂目標。
本研究模擬成果顯示,事件期間庫區水位及事件起始水位越低,出流含砂濃度、排砂效率皆越高。但,若事件期間水位過高,無論是高入、出庫流量下,或短期、長期沖刷渠道工程情境,皆無法有效維持含砂濃度;若溢洪管閘門開啟時庫區水位過高,將降低事件初期空庫之影響,顯示事件起始水位、事件期間水位、溢洪管閘門開啟時之庫區水位等皆與排砂效率相關。
根據本研究模擬成果,若可將現行沖刷渠道斷面拓寬至40公尺、挖深至2公尺,即可於短期內有效提升排砂效率。長期而言,由於水庫分區排砂效率顯著高於沖刷渠道之幾何調整,仍建議規劃水庫分區,避免來自濁水溪之高濃度入流溢淹至旺萊溪側庫區。
Constructing reservoirs serves to store water resources, but it also interrupts the sediment transport in rivers, causing sedimentation and reduce of lifespan of reservoirs. For sustainable operation, sediment flushing has become an important issue.
Among various sediment flushing methods, empty flushing is one of the most efficient methods (Chaudry, 2014). In Taiwan, Agongdian Reservoir is currently the only reservoir implementing annual empty flushing, also one of the few lake-type reservoirs adopt it worldwide. Lake-type reservoirs, however, with their gentle slope and wide reservoir storage range, require careful operation to maintain effective sediment flushing.
The simulation result shows that the flushing channel can accelerate to remove high suspend sediment concentration (hereinafter referred to as SSC) inflow from Zhoushui River, reducing the likelihood of sediment deposition. Furthermore, erosion happens along the Zhoushui River and flushing channel, demonstrating that with the assistance of flushing channel, sedimentation can be removed successfully.
Simulation also shows that lower initial water level and the water level during flushing result in higher SSC and sediment release efficiency. Conversely, higher water level will weakness the benefits of high inflow, high outflow and flushing channel scenarios, making it difficult to maintain SSC of outflow. Opening spillway gates at high water level will also reduce the effect of empty in the beginning. It shows that sediment release efficiency is related to initial water level, water level during rainfall events and water level when the spill shaft opened.
According to our study, widening and deepening the flushing channel will effectively enhance sediment release efficiency in the short term. But in the long run, partition desilting is more effective than adjusting the geometry of flushing channel. We recommended to plan partition desilting and operations at low water levels to prevent the high SSC inflow flows into Wanglai River side of the reservoir.
Annandale, G. W., Morris, G. L., & Karki, P. (2016). Extending the life of reservoirs: sustainable sediment management for dams and run-of-river hydropower. Washington, DC: World Bank.
Atkinson, E. (1996). The feasibility of flushing sediment from reservoirs.
Batuca, D. G., & Jordaan Jr, J. (2000). Silting and desilting of reservoirs. Rotterdam: A.A. Balkema.
Chaudhry, M. A., Habib-ur-Rehman, M., Akhtar, M. N., & Hashmi, H. N. (2014). Modeling sediment deposition and sediment flushing through reservoirs using 1-D numerical model. Arabian Journal for Science and Engineering, 39, 647-658.
Chen, C.-N. (2018). Application of physiographic soil erosion–deposition model in estimating sediment flushing efficiency of empty storage. Journal of Earth System Science, 127(6), 86.
Chen, C.-N., & Tsai, C.-H. (2017). Estimating sediment flushing efficiency of a shaft spillway pipe and bed evolution in a reservoir. Water, 9(12), 924.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., & Stark, C. P. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
Dal, D. (1991). River Sedimentation Problems in China Water Resources and Electric Power Press, Beijing.
Esmaeili, T., Sumi, T., Kantoush, S. A., Kubota, Y., Haun, S., & Rüther, N. (2017). Three-dimensional numerical study of free-flow sediment flushing to increase the flushing efficiency: A case-study reservoir in Japan. Water, 9(11), 900.
Esmaeili, T., Sumi, T., Kantoush, S. A., Kubota, Y., Haun, S., & Rüther, N. (2021). Numerical study of discharge adjustment effects on reservoir morphodynamics and flushing efficiency: an outlook for the Unazuki Reservoir, Japan. Water, 13(12), 1624.
Greimann, B., Lai, Y., & Huang, J. (2008). Two-dimensional total sediment load model equations. Journal of Hydraulic Engineering, 134(8), 1142-1146.
Hajiabadi, R., & Zarghami, M. (2014). Multi-objective reservoir operation with sediment flushing; case study of Sefidrud reservoir. Water resources management, 28, 5357-5376.
Hassanzadeh, Y. (1995). The removal of reservoir sediment. Water International, 20(3), 151-154.
IRTCES. (1985). Lecture notes of the training course on reservoir sedimentation. In: Tsinghua University Beijing, PR China.
Kantoush, S., Sumi, T., Suzuki, T., & Murasaki, M. (2010). Impacts of sediment flushing on channel evolution and morphological processes: Case study of the Kurobe River, Japan. Proceedings of the 5th River Flow Conference, Braunschweig, Germany,
Kantoush, S. A., & Schleiss, A. J. (2009). Channel formation during flushing of large shallow reservoirs with different geometries. Environmental technology, 30(8), 855-863.
KHOJEINI, A. V. (2004). SEFID-RUD RESERVOIR SEDIMENTATION AND FLUSHING OPERATION. Proceedings of the Ninth International Symposium on River Sedimentation (VolumeⅡ),
Kondolf, G. (2013). Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents, Earth’s Future, 2, doi: 10.1002/2013EF000184. In: Received.
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., & Guo, Q. (2014). Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth's Future, 2(5), 256-280.
LAI, J.-S., & Chang, F.-J. (2001). Physical modeling of hydraulic desiltation in Tapu Reservoir. International Journal of Sediment Research, 16(3), 363-379.
Lai, J.-S., & Shen, H. W. (1996). Flushing sediment through reservoirs. Journal of Hydraulic Research, 34(2), 237-255.
Lai, Y., & Gaeuman, D. (2020). SRH-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling. US Bureau of Reclamation: Washington, DC, USA, 179.
Lai, Y. G. (2008). SRH-2D version 2: Theory and User’s Manual, Sedimentation and River Hydraulics–Twodimensional River Flow Modeling.
Liu, J., Minami, S., Otsuki, H., Liu, B., & Ashida, K. (2004). Prediction of concerted sediment flushing. Journal of Hydraulic Engineering, 130(11), 1089-1096.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Morris, G. L. (2015). Management alternatives to combat reservoir sedimentation. Proceedings of the International Workshop on Sediment Bypass Tunnels,
Morris, G. L. (2020). Classification of management alternatives to combat reservoir sedimentation. Water, 12(3), 861.
Morris, G. L., & Fan, J. (1998). Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Otsubo, K., & Muraoka, K. (1988). Critical shear stress of cohesive bottom sediments. Journal of Hydraulic Engineering, 114(10), 1241-1256.
Servat, E., & Dezetter, A. (1991). Selection of calibration objective fonctions in the context of rainfall-ronoff modelling in a Sudanese savannah area. Hydrological Sciences Journal, 36(4), 307-330.
Sloff, C., Jagers, H., & Kitamura, Y. (2004). Study on the channel development in a wide reservoir. Proc. River Flow, Napoli, 811-819.
Sumi, T. (2008). Evaluation of efficiency of reservoir sediment flushing in Kurobe River. Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan,
Wang, G., Wu, B., & Wang, Z. Y. (2005). Sedimentation problems and management strategies of sanmenxia reservoir, yellow river, china. Water resources research, 41(9).
Wang, H.-W., Kondolf, M., Tullos, D., & Kuo, W.-C. (2018). Sediment management in Taiwan’s reservoirs and barriers to implementation. Water, 10(8), 1034.
Wang, H.-W., Tsai, B.-S., Hwang, C., Chen, G.-W., & Kuo, W.-C. (2020). Efficiency of the drawdown flushing and partition desilting of a reservoir in Taiwan. Water, 12(8), 2166.
內政部,內政部20公尺網格數值地形模型資料,檢自https://data.gov.tw/dataset/35430。
行政院,檢自https://www.ey.gov.tw/state/99B2E89521FC31E1/835a4dc2-2c2d-4ee0-9a36-a0629a5de9f0。
行政院農業委員會水土保持局(2017),「水土保持手冊」。
何彥廷(2018),「阿公店水庫排砂操作策略探討」,國立成功大學水利及海洋工程學系,碩士論文。
李豐佐、劉政其、賴進松、闕蓓德(2023),「應用庫底沖刷槽導流牆減緩水庫淤積之研究」,農業工程學報,第69卷第2期,第11-21頁。
財團法人成大研究發展文教基金會(2009),「98年度阿公店水庫空庫防淤泥砂觀測及成效評估」,經濟部水利署南區水資源局。
財團法人成大研究發展文教基金會(2015),「104年度阿公店水庫空庫防淤泥砂觀測 」,經濟部水利署南區水資源局。
財團法人成大研究發展文教基金會(2021),「110年度阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援」,經濟部水利署南區水資源局。
財團法人成大研究發展文教基金會(2023),「112年度阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援」,經濟部水利署南區水資源局。
高雄市政府水利局(2018),「阿公店水庫集水區上游水質改善評估規劃與設計監造」。
陳金諾、黃智聰、蔡智恆、鄭仁嶽.(2017),空庫排砂與操作排砂之排砂效率比較,農業工程學報,第63卷第2期,第49-66頁。
陳家羚、王筱雯、黃瑞儀、吳培碩、蔡元融、李鎮鍵、林立恆 (2024),沖刷渠道對於水庫排砂效率之影響 – 以阿公店水庫為例,〔未發表之文章〕。
經濟部水利署,檢自https://www.wra.gov.tw/News_Content.aspx?n=6430&s=83290。
經濟部水利署(1985),「台灣西部河川輸沙量推估研究」。
經濟部水利署(2009),「大埔水庫重生計畫」。
經濟部水利署(2009),「尖山埤水庫更新改善可行性規劃」。
經濟部水利署(2011),「氣候變遷下水庫排砂對策研究總報告」。
經濟部水利署(2020),「水庫防淤管理與技術應用」。
經濟部水利署(2020),「阿公店水庫第四次定期安全評估」。
經濟部地質調查及礦業管理中心,流域地質圖-斷層,檢自https://data.gov.tw/dataset/8939。
葉建緯、陳永超、陳錦嫣、陳文福(2016),「阿公店水庫防淤操作成效分析之研究」,水土保持學報,第48卷第1期,第1589-1606頁。
蔡元融、林立恆、傅桂霖、邱啟芳、洪政義(2021),「阿公店水庫集水區土砂來源分析與對策」,中華防災學刊,第13卷第1期,第9-16頁。
蔡秉修(2016),「阿公店水庫空庫排砂效率之探討」,國立成功大學水利及海洋工程學系,碩士論文。
賴進松(1998),「阿公店水庫淤泥沖刷起動之研究」,台灣水利,第46卷第3期,第76-83頁。
賴進松、張斐章、楊翰宗(2001),「水庫黏性淤泥沖刷之動床模型試驗研究」,中國土木水利工程學刊,第13卷第1期,第99-109頁。
校內:2026-08-22公開