| 研究生: |
王安邦 Wang, An-Bang |
|---|---|
| 論文名稱: |
InGaN/GaN超晶格電流分散層之InGaN/GaN多重量子井藍光發光二極體的研製 Investigation of InGaN/GaN multiple-quantum-well blue light emitting diode with InGaN/GaN superlattice current spreading layer |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 電流分散層 、發光二極體 、氮化鎵 |
| 外文關鍵詞: | LED, InGaN/GaN MQW, current spreading layer |
| 相關次數: | 點閱:45 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們成功地製作出以InGaN/GaN為多重量子井的藍光發光二極體,並且分析其光與電之特性。我們磊晶成長了七個不同的結構來探討其特性變化,其中包含傳統的發光二極體。我們加入AlGaN這種高能隙的材料來使得載子侷限在發光層中,以提高電子與電洞覆合的機率,進而提升二極體的亮度。此外,我們將利用InGaN/GaN的超晶格層所形成的二維電子雲(2-DEG)使得電流分佈較均勻,因此可以有效地降低順向導通電壓,且對亮度的提升也有明顯的改善。
此外,我們將使用以AlGaN/GaN為基礎的超晶格並且摻雜Mg來取代P型GaN。由於strain造成的壓電場會使得Mg之活化能有效降低。因此Mg-AlGaN/GaN SLs的電洞濃度會比一般的p-GaN高出十倍以上。實驗結果得知,使用上述的P型材料,可以得到較小的順向導通電壓,以及較高的亮度。除此之外,我們也改變多重量子井中Barrier的厚度,以及多重量子井的數目,來探討其對光電特性之影響。
製程方面,我們使用硏磨的方式將藍寶石基板做鏡面拋光,並且鍍上不同的金屬,來比較其對光的反射程度。實驗結果得知鍍上鈦有最好的反射率(58%)。我們將之應用在發光二極體的製程,對發光亮度有39%的提升。
In this thesis, we have successfully
fabricated InGaN/GaN multiple-quantum
-wells (MQW) blue light emitting diodes and analyzed the electrical and optical characteristics. We grew seven different kinds of structures to discuss the characteristic variations of them. In order to get better carrier confine ability, we incorporate conventional LEDs with AlGaN which is a high bandgap material. Therefore, carrier can be confined in active region easily so as to increase the ratio of recombination of electrons and holes. By this, we can get better optical characteristics. Besides, utilizing InGaN/GaN super lattices (SLs) could form two dimension electron gas (2-DEG) and we can get better current spreading characteristics. So, we degrade forward turn on voltage efficiently and increase output power of our LEDs.
Besides, we use Mg-AlGaN/GaN supperlattices (SLs) as p-GaN. It was known that lattice mismatch induced piezoelectric will decrease active energy of Mg. Therefore, using such material can have ten times hole concentration to general p-GaN. By the result of experience, lower forward turn on voltage (I=20 mA) and higher light of power will be achieved. Besides, we also change the thinness of barrier of MQWs and the numbers of MQWs to discuss the influence of electrical and optical characteristic.
In process, we polish the backside of wafer and evaporate different kind of metal on it to compare their reflectance .As result, we find that Ti evaporated on the backside of wafer has batter reflectance (58%) compared to other metal. So we utilize the result in our process of LEDs. It can increase 39% output power of light.
[1]H.P Maruska, J.J Tietjen,“The preparation and properties of vapor-deposited single-crystal-line GaN.” Appl. Phys. Lett , vol.15, p.327, 1969.
[2]R.Dingle, D.D Sell, S.E Stokowski, M.Ilegems,“Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers.”Physical Review B, vol.4, p1211, 1971.
[3]J.I Pankove, J.E Berkeyheiser, E.A Miller, “Properties of Zn-doped GaN.” I. Photoluminescence J. Appl. Phys, vol.45, p.1280, 1974.
[4]M.E Lin, S.Strite, A.Agarwal, A.Salvador, G.L Zhou, N.Teraguchi, A.Rockett, and H.Morkoç, Moustakas,“GaN grown on hydrogen plasma cleaned 6H-SiC substrates.” Appl.Phys.Lett, vol.62, p.702, 1993.
[5]Shirakawa, Tsuguru, “Effect of defects on the degradation of ZnSe-based white LEDs.” Materials Science and Engineering: B. vol.91, p.470, 2002.
[6]H. Wenisch, M. Fehrer, M. Klude, K. Ohkawa, D. Hommel, “Internal
photoluminescence in ZnSe homoepitaxy and application in blue–green–orange
mixed-color light-emitting diodes.” Journal of Crystal Growth, vol.214, p.1075, 2000.
[7]K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, “ZnSe-based white LEDs.” Journal of Crystal Growth, vol.214, p.1064, 2000.
[8]D. Schmitz, E. Woelk, G. Strauch, M. Deschler, H. Jurgensen, “MOVPE growth of InGaN on sapphire using growth initiation cycles.” Materials Science and Engineering: B, vol.43, p.228, 1997.
[9]H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns. “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies.” J. Appl. Phys, vol.76, p.1363, 1994.
[10]S. Nakamura, T. Mukai, and M. Senoh. “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes.” J. Appl. Phys, vol.76, p.8189, 1994.
[11]R. J. Molnar, R. Singh, and T. Moustakas, “Blue-violet light emitting gallium nitride p-n junctions grown by electron cyclotron resonance-assisted molecular beam epitaxy” Appl. Phys. Lett., vol.66, p.268, 1995.
[12]I. Adessida, A. Mahajan, E. Andideh, M. A. Kahn, D. T. Olson, and J. N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasmas,” Appl. Phys. Lett., vol.63, p.2777, 1993.
[13]R. J. Shul, G. B. McClellan, S. A. Casalnuovo, and D. J. Rieger, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett., vol.69, p.1119, 1996.
[14]C. F. Zhu, W. K. Fong, B. H. Leung, C. C. Cheng, and C. Surya “Effects of Rapid Thermal Annealing on the Structural Properties of GaN Thin Films,” IEEE Trans. Electron Devices, vol.48, p.1225, 2001.
[15]S. J. Cai, Y. S. Tang, R. Li, Y. Y. Wei, L. Wong, Y. L. Chen, K. L. Wang, M. Chen, Y. F. Zhao, R. D. Schrimpf, J. C. Keay, and K. F. Galloway “Annealing Behavior of a Proton Irradiated AlxGa1-xN/GaN High Electron Mobility Transistor Grown by MBE,” IEEE Trans. Electron Devices, vol.47, p.304, 2000.
[16]M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkos, “Low resistance ohmic contacts on wide band-gap GaN.” Appl. Phys. Lett., vol.64, p.1003, 1994.
[17]P. J. Hartlieb, A. Roskowski, R. F. Davis, and R. J. Nemanich. “Chemical, electrical, and structural properties of Ni/Au contacts on chemical vapor cleaned p-type GaN.” J. Appl. Phys, vol.91, p.9151, 2002.
[18]R.W. Chuang, A. Q. Zou, and H.P. Lee, Z.J. Dong, “Contact Resistance of InGaN/GaN Light Emitting Diodes Grown on the Production Model Multi-Wafer MOVPE Reactor.” MRS Internet Journal Nitride Semiconductor Research. 4S1, G6.42, 1999.
[19]T. Mori, T. Kozawa, T. Ohwaki, and Y. Taga, “Schottky barriers and contact resistances on p-type GaN.” Appl. Phys. Lett., vol.69, p.3537, 1996.
Chen-Fu Chu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai, and S. C. Wang, “Low-resistance ohmic contacts on p-type GaN using Ni/Pd/Au metallization” Appl. Phys. Lett., vol.77, p.3423, 2000.
[20]W. Götz, M. Johnson, and D. P. Bour, “Deep level defects in Mg-doped,p-type GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett, vol.68, p.3470, 1996.
[21]F. A. Reboredo and S. T. Pantelides, “Novel defect complex and their role in the p-type doping of GaN,” Phys. Rev. Lett, vol.82, p.1887, 1994.
[22]J. Neugebauer and C. G. Van de Walle, “Hydrogen in GaN: Novel aspects of a common impurity,” Phys. Rev. Lett., vol.75, p.4452, 1995.
[23]M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, “The activation of Mg in GaN byannealing with minority-carrier injection,” Appl. Phys. Lett, vol.72, p.1101, 1998 .
[24]B. A. Hull, S. E. Mohney, H. S. Venugoplan, and J. C. Ramer, “Influence of oxygen on the activation of p-type GaN,” Appl. Phys. Lett., vol.76, p.2271, 2000.
[25]S. H. Chung, M. Lachab, T. Wang, Y. Lacroix, D. Basak, Q. Fareed, Kawakami, K. Nishino, and S. Sakai, “Effect of oxygen on the activation of Mg acceptor in GaN epilayers grown by metalorganic chemical vapor deposition. ” Jpn. J. Appl. Phys., vol.39, p.4749, 2000.
[26]T. C. Wen, S. C. Lee, T. Y. Chen, S. H. Chan, and J. S. Tsang, “Activation of p-type GaN in a pure oxygen ambient,” Jpn. J. Appl. Phys., vol.40, p.495, 2001.
[27]Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami, “Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN,” J. Electron. Mater, vol.28, p.341, 1999.
[28]J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R.Chen,and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by
he oxidation of Ni/Au films,” J. Appl. Phys., vol.86, p.491, 1998.
[29]L. C. Chen, F. R. Chen, J. J. Kai, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,” J. Appl. Phys., vol.86, p.3826, 1999
[30]J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In Ga N/GaN short-period superlattice tunneling contact layer,” IEEE Electron. Dev. Lett., vol.22, p.460, 2001.
[31]K. Kumakura and N. Kobayashi, “Increased electrical actitivity of InGaN/GaN superlattices,” Jpn. J. Appl. Phys., vol.38, p.449, 1999.
[32]P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett., vol.74, p.3681, 1999.
[33]R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett., vol.33, p.665, 1978.
[34]I. D. Goepfert et al., “Experimental and theoretical study of acceptor AlGaN/GaN superlattices,” J. Appl. Phys., vol.88, p.2030, 2000.
[35]I. D. Goepfert et al., “Demonstration of efficient p-type doping in AlGaN/GaN superlattice structures,” Electron Lett., vol.35, p.1109, 1999.
[36]M. E. Lin, Z. Ma. F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, “Low resistance ohmic contacts on wide band-gap GaN.” Appl. Phys. Lett., vol.64, p.1003, 1994.