簡易檢索 / 詳目顯示

研究生: 黃永霖
Huang, Yong-Lin
論文名稱: 具改良偏移誤差平均化技術的折疊與內插式類比/數位轉換器
A High-speed Folding and Interpolating A/D Converter With Improved Offset Averaging Techniques
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 91
中文關鍵詞: 偏移誤差平均化技術折疊
外文關鍵詞: averaging technique, folding, offset
相關次數: 點閱:96下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高位元速度的資料傳送應用如DVD 播放器和Gigabit 以太網路
    不斷地需求更高速的類比/數位轉換器。在高速操作下,時脈誤差和
    失真現象會限制轉換器的效能。為了達到高速操作而不至惡化失真問
    題,一般會比較傾向於使用開回路平行式架構的類比/數位轉換器。
    其中,採用折疊與內插式架構的類比/數位轉換器可放鬆其在速度、
    準確度與功率消耗上的取捨。
    本篇論文即詳細討論一個高速、中等解析度之折疊與內插式類比
    /數位轉換器的設計,其涵蓋了三種主要功能,分別是放大、類比前
    端處理與比較。為了降低折疊信號達到穩態值所需的時間,因此加入
    了短路用開關及一些電路技巧。為了降低偏移誤差進而提高比較的準
    確度,本論文提出兩種改良式的平均化技術,經由詳細的分析後可證
    明這些技術比之前的方法更能有效地降低偏移誤差。佈局後的模擬結
    果證實此類比/數位轉換器可操作在400MS/s ,以及在2.5 伏特的電壓
    供應下消耗405mW 的功率。當輸入信號為50MHz 時,可以達到6.1
    位元的有效解析度。整個類比/數位轉換器的晶片面積為
    1.3x1.6mm
    2 ,採用TSMC 0.25um ,1P5M 的CMOS 混和信號製程。

    The high-bit-rate data communications such as DVD playback and Gigabit Eth-
    ernet are spurring on the conversion rate of A/D converters. With the increasing
    conversion rate, the main problems that impair the performance are the timing in-
    accuracies and distortions. To provide a fastest path to quantize an analog signal
    without aggravating the distortion problems, the parallel A/D architectures by using
    only open-loop analog signal processing are preferred. Among them, the folding and
    interpolating A/D converter can relax the trade-offs among the speed, accuracy, and
    power dissipation.
    This thesis examines the design of high-speed, medium-resolution(8 bits) folding
    and interpolating A/D converters in terms of three basic functions, namely, amplifica-
    tion, analog preprocessing, and comparison. To reduce the settling time for processing
    the folded analog signal, shorting switches and some circuit techniques are added. To
    perform a precise comparison with less offset, two proposed averaging techniques are
    analyzed and proven to be more efficient than the previous implementation. The
    post-layout simulation demonstrates the experimental 8-bit A/D converter can clock
    at 400MSample/s with a power dissipation of 405mW from a 2.5 V supply voltage.
    With a input frequency of 50MHz, 6.1 effective bits are obtained. The chip area is
    1.3x1.6mm2 in TSMC 0.25um CMOS 1P5M mixed-signal process.

    Abstract Contents 1 Introduction.................................1 1.1 Motivation.................................1 1.2 Applications...............................2 1.3 Thesis Organization........................3 2 Review of High-speed CMOS ADC Architectures..5 2.1 Full flash ADC.............................5 2.2 Pipelined or Multistage ADC................6 2.3 Time-interleaved ADC.......................7 2.4 Folding ADC................................8 3 Design Techniques of A Folding ADC...........11 3.1 Averaging and Interpolating Technique......12 3.1.1 One-stage averaging......................12 3.1.2 Interpolating............................26 3.1.3 Averaging placement......................31 3.2 Dynamic Performance Enhancement............35 3.2.1 Adding front-end track-and-hold circuit..35 3.2.2 Comparison among different track-and-hold topologies.....................................39 3.3 Special Techniques and Design Issues.......42 3.3.1 Offset storage...........................42 3.3.2 Cascaded folding and interpolating.......45 3.3.3 Timing accuracy..........................47 3.4 Architectural Design of A High-speed 8-bit FAI ADC........................................49 4 Circuit Implementation: An 8-bit 400MS/s ADC.55 4.1 Front-end Track-and-hold Circuit...........55 4.2 Adding Preamplifiers.......................58 4.3 Folder and Interpolator....................61 4.4 Comparator and Error Correction............65 4.4.1 High-speed comparator design issues......65 4.4.2 Error correction.........................68 4.5 Bit-synchronization and Other Digital Circuits ...............................................69 4.5.1 Bit-synchronization principle............69 4.5.2 Miscellaneous Circuits...................70 4.6 Whole Chip Considerations..................72 4.6.1 Supply and ground bounce.................72 4.6.2 Input matching and clock generation......75 5 Simulation and Measurement Results...........78 5.1 Layout and Simulation Results..............78 5.2 PCB Design and Measurement.................83 6 Conclusion...................................86 Reference......................................88

    [1] J. Spalding and D. Dalton, "A 200 MSample/s 6b Flash ADC in 0.6um CMOS,"
    in ISSCC Dig. Tech. Papers, Feb. 1996, pp. 320-321.
    [2] S. Tsukamoto, I. Dedic, T. Endo, K. Kikuta, K. Goto, and O. Kobayashi, "A
    CMOS 6-b, 200 MSample/s, 3 V-supply A/D Converter for a PRML read channel
    LSI," IEEE J. Solid-State Circuits, vol. 31, pp. 1831-1836, Nov. 1996.
    [3] R. J. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Con-
    verters. Norwood, MA: Kluwer, 1994.
    [4] C. Conroy, D. Cline, and P. Gray, "An 8-b 85-MS/s Parallel Pipeline A/D Con-
    verter in 1-um CMOS," IEEE J. Solid-State Circuits, vol. 28, No.4, pp. 447-454,
    Apr. 1993.
    [5] R. Roovers, and M. Steyaert, "A 175 MS/s, 6 b, 160 mW, 3.3 V CMOS A/D
    Converter," IEEE J. Solid-State Circuits, vol. 31, No.7, pp. 938-944, July 1996.
    [6] M. Flynn, and D. Allstot, "CMOS Folding A/D Converters with Current-Mode
    Interpolation," IEEE J. Solid-State Circuits, vol. 31, No.9, pp. 1248-1257, Sep.
    1993.
    [7] Dingwall, A.G.F. et al., "CMOS, 1u, 8b, 50MHz Averaging Flash A/DC Building
    Block," Consumer Electronics, Dig. Tech. Papers., IEEE 1992 Int. Con. on, pp.
    418-419.
    [8] K. Kattmann and J. Barrow, "A Technique for Reducing Di erential Non-
    linearity Errors in Flash A/D Converters," in ISSCC Dig. Tech. Papers, Feb.
    1991, pp. 170-171.
    [9] H. Pan, M. Segami, M. Choi, J. Cao, and A. Abidi, "A 3.3-V 12-b 50-MS/s
    A/D Converter in 0.6-um CMOS with over 80-dB SFDR," IEEE J. Solid-State
    Circuits, vol. 35, pp. 1769-1780, Dec. 2000.
    [10] J. White and A. Abidi, "Active Resistor Network as 2-D Sampled Data Filters,"
    IEEE Trans. on Circuits and Systems - I: Fundamental Theory and Applications,
    vol. 39, pp. 724-733, Sep. 1992.
    [11] M. Choi and A. Abidi, "A 6-b 1.3-GSample/s A/D Converter in 0.35-um CMOS,"
    in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 126-127.
    [12] Van de Grift, I. Mutten, and Van der Veen, "An 8-bit Video ADC Incorporating
    Folding and Interpolation Techniques," IEEE J. Solid-State Circuits, vol. sc-22,
    no. 6, pp. 944-953, Dec. 1987.
    [13] P. Scholtens and M. Vertregt, "A 6b 1.6GSample/s Flash ADC in 0.18um CMOS
    using Averaging Termination," in ISSCC Dig. Tech. Papers, Feb. 2002, pp. 168-
    169.
    [14] J. Valburg and R. van de Plassche, "An 8-b 650-MHz Folding ADC," IEEE J.
    Solid-State Circuits, vol. 27, no. 12, pp. 1662-1666, Dec. 1992.
    [15] P. Vorenkamp and R. Roovers, "A 12-b, 60-MSample/s Cascaded Folding and
    Interpolating ADC," IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1876-1886,
    Dec. 1997.
    [16] A. Venes and Van de Plassche, "An 80-MHz, 80-mW, 8-b CMOS Folding A/D
    Converter with Distributed Track-and-Hold Preprocessing," IEEE J. Solid-State
    Circuits, vol. 31, no. 12, pp. 1846-1853, Dec. 1996.
    [17] B. Razavi, Principles of Data Conversion System Design. New York: IEEE Press,
    1995.
    [18] Y. T. Wang and B. Razavi, "An 8-Bit 150-MHz CMOS A/D Converter," IEEE
    J. Solid-State Circuits, vol. 35, no. 6, pp. 308-317, Mar. 2000.
    [19] K. Bult and A. Buchwald, "An Embedded 240-mW 10-b 50-MS/s CMOS ADC
    in 1mm2,"IEEE J.Solid-State Circuits,vol.32,no.12,pp.1887-1895,Dec.1997.
    [20] B. Razavi, "Design of a 100-MHz 10-mW 3-V Sample-and-Hold Ampli er in
    Digital Bipolar Technology," IEEE J. Solid-State Circuits, vol. 30, no. 7, pp.
    724-730, July 1995.
    [21] P. Lim and B. Wooley, "A High-Speed Sample-and-Hold Technique Using a Miller
    Hold Capacitance," IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 643-651, Apr.
    1991.
    [22] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw Hill, 2001.
    [23] B. Razavi, "Design of Sample-and-Hold Ampli ers for High-Speed Data Con-
    verters," Proc. IEEE Custom Integrated Circuits Conference, pp. 59-66, May
    1997.
    [24] J.T. Wu and B. Wooley, "A 100-MHz Pipelined CMOS Comparator," IEEE J.
    Solid-State Circuits, vol. 23, no. 6, pp. 1379-1385, Dec. 1988.
    [25] B. Fotouhi, "Optimization of Chopper Ampli ers for Speed and Gain," IEEE J.
    Solid-State Circuits, vol. 29, no. 7, pp. 823-828, July 1994.
    [26] M. Ito, T. Miki, et al., "A 10 bit 20 MS/s 3 V Supply CMOS A/D Converter,"
    IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1531-1536, Dec. 1994.
    [27] C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction,"
    IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 184-191, Feb. 1990.
    [28] B. Nauta and A. Venes, "A 70-MS/s 110-mW 8-b CMOS Folding and Interpolat-
    ing A/D Converter," IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1302-1308,
    Dec. 1995.
    [29] J. Yuan and C. Svensson, "High-speed CMOS Circuit Technique," IEEE J. Solid-
    State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
    [30] P. Larsson, "Resonance and Damping in CMOS Circuits with On-chip Decou-
    pling Capacitance," IEEE Trans. on Circuits and Systems - I: Fundamental The-
    ory and Applications, vol. 45, pp. 849-858, Aug. 1998.
    [31] D. Wouter, J. Groeneveld, and D. de Jong, "Groundbounce in CMOS," in Ana-
    log Circuit Design: Mixed A/D Circuit Design, Sensor Interface Circuits, and
    Communication Circuits, Kluwer Academic Publishers, 1994.
    [32] M. Shoji, "Elimination of Process-Dependent Clock Skew in CMOS VLSI," IEEE
    J. Solid-State Circuits, vol. SC-21, no. 5, pp. 875-880, Oct. 1986.

    下載圖示 校內:2003-07-10公開
    校外:2004-07-10公開
    QR CODE