| 研究生: |
黃永霖 Huang, Yong-Lin |
|---|---|
| 論文名稱: |
具改良偏移誤差平均化技術的折疊與內插式類比/數位轉換器 A High-speed Folding and Interpolating A/D Converter With Improved Offset Averaging Techniques |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 偏移誤差 、平均化技術 、折疊 |
| 外文關鍵詞: | averaging technique, folding, offset |
| 相關次數: | 點閱:96 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高位元速度的資料傳送應用如DVD 播放器和Gigabit 以太網路
不斷地需求更高速的類比/數位轉換器。在高速操作下,時脈誤差和
失真現象會限制轉換器的效能。為了達到高速操作而不至惡化失真問
題,一般會比較傾向於使用開回路平行式架構的類比/數位轉換器。
其中,採用折疊與內插式架構的類比/數位轉換器可放鬆其在速度、
準確度與功率消耗上的取捨。
本篇論文即詳細討論一個高速、中等解析度之折疊與內插式類比
/數位轉換器的設計,其涵蓋了三種主要功能,分別是放大、類比前
端處理與比較。為了降低折疊信號達到穩態值所需的時間,因此加入
了短路用開關及一些電路技巧。為了降低偏移誤差進而提高比較的準
確度,本論文提出兩種改良式的平均化技術,經由詳細的分析後可證
明這些技術比之前的方法更能有效地降低偏移誤差。佈局後的模擬結
果證實此類比/數位轉換器可操作在400MS/s ,以及在2.5 伏特的電壓
供應下消耗405mW 的功率。當輸入信號為50MHz 時,可以達到6.1
位元的有效解析度。整個類比/數位轉換器的晶片面積為
1.3x1.6mm
2 ,採用TSMC 0.25um ,1P5M 的CMOS 混和信號製程。
The high-bit-rate data communications such as DVD playback and Gigabit Eth-
ernet are spurring on the conversion rate of A/D converters. With the increasing
conversion rate, the main problems that impair the performance are the timing in-
accuracies and distortions. To provide a fastest path to quantize an analog signal
without aggravating the distortion problems, the parallel A/D architectures by using
only open-loop analog signal processing are preferred. Among them, the folding and
interpolating A/D converter can relax the trade-offs among the speed, accuracy, and
power dissipation.
This thesis examines the design of high-speed, medium-resolution(8 bits) folding
and interpolating A/D converters in terms of three basic functions, namely, amplifica-
tion, analog preprocessing, and comparison. To reduce the settling time for processing
the folded analog signal, shorting switches and some circuit techniques are added. To
perform a precise comparison with less offset, two proposed averaging techniques are
analyzed and proven to be more efficient than the previous implementation. The
post-layout simulation demonstrates the experimental 8-bit A/D converter can clock
at 400MSample/s with a power dissipation of 405mW from a 2.5 V supply voltage.
With a input frequency of 50MHz, 6.1 effective bits are obtained. The chip area is
1.3x1.6mm2 in TSMC 0.25um CMOS 1P5M mixed-signal process.
[1] J. Spalding and D. Dalton, "A 200 MSample/s 6b Flash ADC in 0.6um CMOS,"
in ISSCC Dig. Tech. Papers, Feb. 1996, pp. 320-321.
[2] S. Tsukamoto, I. Dedic, T. Endo, K. Kikuta, K. Goto, and O. Kobayashi, "A
CMOS 6-b, 200 MSample/s, 3 V-supply A/D Converter for a PRML read channel
LSI," IEEE J. Solid-State Circuits, vol. 31, pp. 1831-1836, Nov. 1996.
[3] R. J. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Con-
verters. Norwood, MA: Kluwer, 1994.
[4] C. Conroy, D. Cline, and P. Gray, "An 8-b 85-MS/s Parallel Pipeline A/D Con-
verter in 1-um CMOS," IEEE J. Solid-State Circuits, vol. 28, No.4, pp. 447-454,
Apr. 1993.
[5] R. Roovers, and M. Steyaert, "A 175 MS/s, 6 b, 160 mW, 3.3 V CMOS A/D
Converter," IEEE J. Solid-State Circuits, vol. 31, No.7, pp. 938-944, July 1996.
[6] M. Flynn, and D. Allstot, "CMOS Folding A/D Converters with Current-Mode
Interpolation," IEEE J. Solid-State Circuits, vol. 31, No.9, pp. 1248-1257, Sep.
1993.
[7] Dingwall, A.G.F. et al., "CMOS, 1u, 8b, 50MHz Averaging Flash A/DC Building
Block," Consumer Electronics, Dig. Tech. Papers., IEEE 1992 Int. Con. on, pp.
418-419.
[8] K. Kattmann and J. Barrow, "A Technique for Reducing Di erential Non-
linearity Errors in Flash A/D Converters," in ISSCC Dig. Tech. Papers, Feb.
1991, pp. 170-171.
[9] H. Pan, M. Segami, M. Choi, J. Cao, and A. Abidi, "A 3.3-V 12-b 50-MS/s
A/D Converter in 0.6-um CMOS with over 80-dB SFDR," IEEE J. Solid-State
Circuits, vol. 35, pp. 1769-1780, Dec. 2000.
[10] J. White and A. Abidi, "Active Resistor Network as 2-D Sampled Data Filters,"
IEEE Trans. on Circuits and Systems - I: Fundamental Theory and Applications,
vol. 39, pp. 724-733, Sep. 1992.
[11] M. Choi and A. Abidi, "A 6-b 1.3-GSample/s A/D Converter in 0.35-um CMOS,"
in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 126-127.
[12] Van de Grift, I. Mutten, and Van der Veen, "An 8-bit Video ADC Incorporating
Folding and Interpolation Techniques," IEEE J. Solid-State Circuits, vol. sc-22,
no. 6, pp. 944-953, Dec. 1987.
[13] P. Scholtens and M. Vertregt, "A 6b 1.6GSample/s Flash ADC in 0.18um CMOS
using Averaging Termination," in ISSCC Dig. Tech. Papers, Feb. 2002, pp. 168-
169.
[14] J. Valburg and R. van de Plassche, "An 8-b 650-MHz Folding ADC," IEEE J.
Solid-State Circuits, vol. 27, no. 12, pp. 1662-1666, Dec. 1992.
[15] P. Vorenkamp and R. Roovers, "A 12-b, 60-MSample/s Cascaded Folding and
Interpolating ADC," IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1876-1886,
Dec. 1997.
[16] A. Venes and Van de Plassche, "An 80-MHz, 80-mW, 8-b CMOS Folding A/D
Converter with Distributed Track-and-Hold Preprocessing," IEEE J. Solid-State
Circuits, vol. 31, no. 12, pp. 1846-1853, Dec. 1996.
[17] B. Razavi, Principles of Data Conversion System Design. New York: IEEE Press,
1995.
[18] Y. T. Wang and B. Razavi, "An 8-Bit 150-MHz CMOS A/D Converter," IEEE
J. Solid-State Circuits, vol. 35, no. 6, pp. 308-317, Mar. 2000.
[19] K. Bult and A. Buchwald, "An Embedded 240-mW 10-b 50-MS/s CMOS ADC
in 1mm2,"IEEE J.Solid-State Circuits,vol.32,no.12,pp.1887-1895,Dec.1997.
[20] B. Razavi, "Design of a 100-MHz 10-mW 3-V Sample-and-Hold Ampli er in
Digital Bipolar Technology," IEEE J. Solid-State Circuits, vol. 30, no. 7, pp.
724-730, July 1995.
[21] P. Lim and B. Wooley, "A High-Speed Sample-and-Hold Technique Using a Miller
Hold Capacitance," IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 643-651, Apr.
1991.
[22] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw Hill, 2001.
[23] B. Razavi, "Design of Sample-and-Hold Ampli ers for High-Speed Data Con-
verters," Proc. IEEE Custom Integrated Circuits Conference, pp. 59-66, May
1997.
[24] J.T. Wu and B. Wooley, "A 100-MHz Pipelined CMOS Comparator," IEEE J.
Solid-State Circuits, vol. 23, no. 6, pp. 1379-1385, Dec. 1988.
[25] B. Fotouhi, "Optimization of Chopper Ampli ers for Speed and Gain," IEEE J.
Solid-State Circuits, vol. 29, no. 7, pp. 823-828, July 1994.
[26] M. Ito, T. Miki, et al., "A 10 bit 20 MS/s 3 V Supply CMOS A/D Converter,"
IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1531-1536, Dec. 1994.
[27] C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction,"
IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 184-191, Feb. 1990.
[28] B. Nauta and A. Venes, "A 70-MS/s 110-mW 8-b CMOS Folding and Interpolat-
ing A/D Converter," IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1302-1308,
Dec. 1995.
[29] J. Yuan and C. Svensson, "High-speed CMOS Circuit Technique," IEEE J. Solid-
State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
[30] P. Larsson, "Resonance and Damping in CMOS Circuits with On-chip Decou-
pling Capacitance," IEEE Trans. on Circuits and Systems - I: Fundamental The-
ory and Applications, vol. 45, pp. 849-858, Aug. 1998.
[31] D. Wouter, J. Groeneveld, and D. de Jong, "Groundbounce in CMOS," in Ana-
log Circuit Design: Mixed A/D Circuit Design, Sensor Interface Circuits, and
Communication Circuits, Kluwer Academic Publishers, 1994.
[32] M. Shoji, "Elimination of Process-Dependent Clock Skew in CMOS VLSI," IEEE
J. Solid-State Circuits, vol. SC-21, no. 5, pp. 875-880, Oct. 1986.