簡易檢索 / 詳目顯示

研究生: 鄭永佶
Jang, Yung-Ji
論文名稱: 奈米碳管/鎳鋅鐵氧體混合材料之研製與EMI應用
Manufacture of Absortion Material WCNT/(Ni1-xZnx)Fe2O4 and Application for EMI
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 吸波材料EM鎳鋅鐵氧體
外文關鍵詞: absorption materials, EMI, (Ni0.5Zn0.5)Fe2O4
相關次數: 點閱:79下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗第一部份利用固態合成法(Solid-state method)來備製鎳鋅鐵氧體(Ni1-xZnx)Fe2O4,首先探討(Ni1-xZnx)Fe2O4,x為大範圍取代(x= 0、0.3、0.5、0.7、1)之微結構與磁特性,由實驗得知當取代比例為x=0.5時,可以使材料獲得最大飽和磁化量52.45 emg/g、最小半高寬0.046及最大導磁係數3.3561。接著探討不同溫度對(Ni0.5Zn0.5)Fe2O4磁滯曲線之影響,由實驗得知溫度上升會造成飽和磁化量上升,當溫度為1100℃時有著最大飽和磁化量65.774 emg/g、最小半高寬0.052及最大導磁係數4.26。
    第二部份以ABS膠與(Ni1-xZnx)Fe2O4及(Ni1-xZnx)Fe2O4/多壁奈米碳管(WCNT)複合物備製出15cm^15cm之複合試片,並探討2-18GHz微波頻段之電磁波遮蔽特性。首先探討ABS/(Ni1-xZnx)Fe2O4複合試片,此組試片在鎳鋅鐵養體為50t%試片時最大遮蔽值為-26.7dB主要遮蔽頻率為6.375GHz。接著探討試片厚度對遮蔽之影響,由結果顯示厚度的提昇,會使得整體遮蔽頻段往低頻移動,同時發現遮蔽頻寬隨著厚度增加而減小。最後探討ABS /(Ni1-xZnx)Fe2O4/ (WCNT)複合試片,從結果發現4wt%試片在13.25GHz,有最大遮蔽值-22.7dB,也顯示出多壁奈米碳管的摻入有利於介電常數整體提升,並使得遮蔽頻段往更高頻推動。
    根據本論文可以充分了解,在高頻下遮蔽機制以介電損失為主,若要依據特定頻段設計出相對應之遮蔽材料,必須遵守以下;了解主要遮蔽頻率適當控制試片厚度,使得頻率厚度乘積為定值,如果需要增強遮蔽能力可以由摻雜量多寡下手,同時注意到塑膠窄體是否能夠完整支撐摻雜量。

    The shielding effect of (Ni1-xZnx)Fe2O4 ( x=0、0.3、0.5、0.7、1) electromagnetic wave absorption materials are discussed in this paper. The Electromagnetic wave absorption materials by the conventional solid-state route were prepared. We discuss doping effect about Hysteresis curve. As x arrived 0.5, it showed a excellent properties like Saturated magnetization Ms=52.45 emg/g, Coercivity Hc=12.13 A/m, Full width at half maximum FWHM=0.046 and Relative Permeability coefficient μ=3.3561 . Then, we discuss temperature effect about Hysteresis curve and XRD. The experimental results show that (Ni0.5Zn0.5)Fe2O4 high-temperature processing at 1100℃ for 4 hours has the best properties like Saturated magnetization Ms=65.774 emg/g, Coercivity Hc=24.2 A/m, Full width at half maximum FWHM=0.052 and Relative Permeability coefficient μ=4.26. Finally, we designed and fabricated a EM shielding sheet (15cm x 15cm) by reflection loss (RL) measurements in the frequency ranges of 2-18GHz. According to the results of measurements, The ABS/ (Ni0.5Zn0.5)Fe2O4 shielding effect can arrive -26.7dB at content of 50wt% , It was found that absorption frequency and thick were in inverse proportion, and the ABS/ (Ni0.5Zn0.5)Fe2O4/WCNT shielding effect can arrive -22.7dB at content of 4wt%. According to this paper can fully understand, If we’d like to design EM wave shielding materials, we must control thick and the concentration of the material to achieve the desired.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第二章 材料理論基礎 4 2-1 材料燒結原理 4 2-1-1 材料燒結之擴散機制 4 2-1-2 材料燒結之過程 5 2-1-3 燒結之種類(固、液相燒結) 6 2-2 磁性材料 8 2-2-1 磁性的來源 8 2-2-2 磁性的分類 10 2-2-3 尖晶石之結構 12 2-2-4 鐵氧磁性的來源 13 2-3 磁滯理論 14 2-3-1 磁滯曲線 14 2-3-2 居禮溫度(Curie temperature) 15 2-4 奈米碳管 17 2-4-1 奈米碳管源頭 17 2-4-2 奈米碳管之結構 17 2-4-3 奈米碳管之特性 19 第三章 電磁相容與電磁干擾 21 3-1電磁相容與電磁干擾之基本概念 21 3-1-1 電磁波來源 21 3-1-2 電磁干擾之標準規範 24 3-1-3 電磁干擾與電磁相容防治方式 26 3-1-4 吸收與遮蔽材料之特性 27 3-1-5 EMI檢測與應用 29 3-2 電磁干擾與吸收材料之理論 31 3-2-1 電磁干擾之定理 31 3-2-2 電磁干擾之理論計算 33 3-2-3 遮蔽材料之損失理論 37 第四章 實驗程序與量測方法 40 4-1 粉體原料 40 4-2 材料製作 41 4-2-1 粉末配置 42 4-2-2 塊材製作 43 4-3. 材料之量測與分析 44 4-3-1 XRD相鑑定 44 4-3-2 SEM表面微結構分析 46 4-3-3 VSM磁特性分析 47 4-4 試片之製作與量測 49 4-4-1 試片製作(X=奈米碳管,Y=鎳鋅鐵氧體,Z=ABS) 49 4-4-2 微波反射損失之量測理論 51 4-5 進行步驟 56 第五章 實驗結果與討論 59 5-1 (Ni1-xZnx)Fe2O4 59 5-1-1 (Ni1-xZnx)Fe2O4之XRD相鑑定分析 59 5-1-2 (Ni1-xZnx)Fe2O4之磁性分析 62 5-1-3 (Ni0.5Zn0.5)Fe2O4之XRD相鑑定分析 65 5-1-4 (Ni0.5Zn0.5)Fe2O4之磁特性量測 67 5-1-5 (Ni0.5Zn0.5)Fe2O4之SEM微結構分析 70 5-2 ABS/(Ni0.5Zn0.5)Fe2O4 74 5-2-1 ABS/(Ni0.5Zn0.5)Fe2O4之試片表面分析 74 5-2-2 ABS/(Ni0.5Zn0.5)Fe2O4之導磁係數與介電常數分析 77 5-2-3 ABS/(Ni0.5Zn0.5)Fe2O4之試片厚度分析 80 5-2-4 ABS/(Ni0.5Zn0.5)Fe2O4之反射損失量測 82 5-3 ABS/(Ni0.5Zn0.5)Fe2O4/WCNT 85 5-3-1 ABS/(Ni0.5Zn0.5)Fe2O4/WCNT之導磁係數介電常數分析 85 5-3-2 ABS/(Ni0.5Zn0.5)Fe2O4/WCNT之反射損失量測 88 第六章 結論 90 參考文獻 92   表目錄 表 2- 1常見鐵磁性材料之居禮溫度[30] 16 表 2- 2各類磁性材料分類[30] 16 表 2- 3奈米碳管之形狀與性質關係[36] 19 表 3- 1電磁干擾產生來源[19] 23 表 3- 2美國FCC放射管理法規[39] 24 表 3- 3歐盟對資訊科技儀器的電磁干擾限制規範[39] 24 表 3- 4台灣使用之安全標準[39] 24 表 3- 5檢驗時程表[40] 25 表 3- 6遮蔽與吸收材料之特性 27 表 3- 7不同dB值所代表之遮蔽效果[45] 33 表 3- 8反射損失與吸收損失之比較[46] 36 表 4- 1原料粉末之純度與尺寸等級 40 表 4- 2 X光繞射分析儀操作條件 44 表 5- 1 (Ni1-xZnx)Fe2O4之XRD繞射角、晶格距離、相對強度及結晶面 60 表 5- 2 不同x下(Ni1-xZnx)Fe2O4之米勒面與繞射角關係 61 表 5- 3 (Ni1-xZnx)Fe2O4之飽和磁化量(Ms)、殘磁(Mr)、矯頑力(Hc) 63 表 5- 4 不同溫度下(Ni0.5Zn0.5)Fe2O4之米勒面與繞射角關係 66 表 5- 5 (Ni0.5Zn0.5)Fe2O4之飽和磁化量(Ms)、殘磁(Mr)、矯頑力(Hc) 69 表 5- 6遮蔽材料相關參數比較 84   圖目錄 Fig.2 - 1晶粒間接觸介面 5 Fig.2 - 2燒結初期示意圖 6 Fig.2 - 3電子繞原子核運動 8 Fig.2 - 4電子之軌道運動方向 8 Fig.2 - 5各種磁性物質內部磁矩排列情形 11 Fig.2 - 6尖晶石單位晶包內原子之排列及A、B離子占據四面體與八面體示意圖[26] 12 Fig.2 - 7磁滯曲線 [29] 14 Fig.2 - 8溫對對鐵磁性材料磁矩之影響 15 Fig.2 - 9單層奈米碳管[34] 18 Fig.2 - 10多層奈米碳管[35] 18 Fig.2 - 11 Graphene sheet平面結構[36] 20 Fig.2 - 12 (a) Armchair 奈米碳管,(m,n)=(5,5),θ=30° 20 Fig.3 - 1電磁波之電場與磁場以及波之行進方向[19] 22 Fig.3 - 2磁場、電場與阻抗之關係[38] 22 Fig.3 - 3商品之EMC檢驗流程 25 Fig.3 - 4電磁干擾頻診斷應用示意圖[42] 29 Fig.3 - 5電磁干擾輻射場強度診斷[43] 30 Fig.3 - 6吸收波試片遮蔽應用示意圖 30 Fig.3 - 7電磁波入射不同物質之介面 32 Fig.3 - 8導電損失設計 37 Fig.3 - 9鐵氧體磁譜曲線 38 Fig.3 - 10磁避共振[19] 39 Fig.4 - 1材料製作流程 41 Fig.4 - 2燒結過程之持溫時間及溫度 43 Fig.4 - 3半高寬之示意圖 45 Fig.4 - 4 VSM偵測裝置原理簡圖 48 Fig.4 - 5試片製作流程圖 50 Fig.4 - 6電磁波正向入射雙層介質 52 Fig.4 - 7三層介質之正向入射 54 Fig.4 - 8電磁波試片設計流程 55 Fig.4 - 9步驟1粉體摻雜點分析之流程 57 Fig.4 - 10步驟1溫度點分析之流程 57 Fig.5 - 1 PDF Card #01-080-4886::(Ni0.5Zn0.5)Fe2O4 59 Fig.5 - 2 (Ni1-xZnx)Fe2O4 (x=0、0.3、0.5、0.7、1)之持溫4小時之XRD繞射圖 60 Fig.5 - 3 (Ni1-xZnx)Fe2O4 (x =0、0.3、0.5、0.7、1)之磁滯曲線 63 Fig.5 - 4 (Ni1-xZnx)Fe2O4 (x =0、0.3、0.5、0.7、1)之磁場強度與導磁係數關係 64 Fig.5 - 5 (Ni0.5Zn0.5)Fe2O4在高溫處理下之XRD繞射圖 65 Fig.5 - 6(Ni0.5Zn0.5)Fe2O4於950℃至1100℃之磁滯曲線 68 Fig.5 - 7 (Ni0.5Zn0.5)Fe2O4於1100℃至1300℃之磁滯曲線 68 Fig.5 - 8 不同溫度下(Ni0.5Zn0.5)Fe2O4之磁場強度與導磁係數關係 69 Fig.5 - 9 (Ni1-xZnx)Fe2O4在x = 0.5、T=950持溫4小時之SEM 70 Fig.5 - 10 (Ni1-xZnx)Fe2O4在x = 0.5、T=1000持溫4小時之SEM 71 Fig.5 - 11 (Ni1-xZnx)Fe2O4在x = 0.5、T=1050持溫4小時之SEM 71 Fig.5 - 12 (Ni1-xZnx)Fe2O4在x = 0.5、T=1100持溫4小時之SEM 72 Fig.5 - 13 (Ni1-xZnx)Fe2O4在x = 0.5、T=1200持溫4小時之SEM 72 Fig.5 - 14 (Ni1-xZnx)Fe2O4在x = 0.5、T=1300持溫4小時之SEM 73 Fig.5 - 15 ABS空白試片 75 Fig.5 - 16 ABS/鎳鋅鐵氧體(10wt%)試片之表面分布 75 Fig.5 - 17 ABS/鎳鋅鐵氧體(30wt%)試片之表面分布 76 Fig.5 - 18 ABS/鎳鋅鐵氧體(50wt%)試片之表面分布 76 Fig.5 - 19 不同濃度下ABS/鎳鋅鐵氧體導磁係數實部與頻率關係 78 Fig.5 - 20 不同濃度下ABS/鎳鋅鐵氧體導磁係數虛部與頻率關係 78 Fig.5 - 21 不同濃度下ABS/鎳鋅鐵氧體介電常數實部與頻率關係 79 Fig.5 - 22 不同濃度下ABS/鎳鋅鐵氧體介電常數虛部與頻率關係 79 Fig.5 - 23 ABS/鎳鋅鐵氧體(摻雜重量比3:1)不同厚度之遮蔽效果與頻率響應關係 80 Fig.5 - 24 ABS/鎳鋅鐵氧體(摻雜重量比3:1)厚度與頻率響應關係 81 Fig.5 - 25 ABS/鎳鋅鐵氧體(摻雜重量比3:1)遮蔽效益與頻率厚度乘積為定值之關係 81 Fig.5 - 26 不同濃度下之ABS/鎳鋅鐵氧體遮蔽效益與頻率響應關係 83 Fig.5 - 27不同濃度下ABS/鎳鋅鐵氧體遮蔽效益與頻率厚度乘積為定值之關係 83 Fig.5 - 28 不同奈米碳管濃度下ABS/鎳鋅鐵氧體/奈米碳管導磁係數實部與頻率關係 86 Fig.5 - 29 不同奈米碳管濃度下ABS/鎳鋅鐵氧體/奈米碳管導磁係數虛部與頻率關係 86 Fig.5 - 30 不同奈米碳管濃度下ABS/鎳鋅鐵氧體/奈米碳管介電常數實部與頻率關係 87 Fig.5 - 31 不同奈米碳管濃度下ABS/鎳鋅鐵氧體/奈米碳管介電常數虛部與頻率關係 87 Fig.5 - 32 不同奈米碳管濃度下ABS/鎳鋅鐵氧體/奈米碳管遮蔽效益與頻率響應關係 89 Fig.5 - 33 ABS/鎳鋅鐵氧體/奈米碳管之奈米碳管摻雜8wt%之試片 89

    [1] C. R. Paul, Introduction to electromagnetic compatibility vol. 184: John Wiley & Sons, 2006.
    [2] T. Hubing, J. Drewniak, T. Van Doren, and N. Kashya, "An expert system approach to EMC modeling," in Electromagnetic Compatibility, 1996. Symposium Record. IEEE 1996 International Symposium on, 1996, pp. 200-203.
    [3] M. L. Crawford, "Generation of standard EM fields using TEM transmission cells," Electromagnetic Compatibility, IEEE Transactions on, pp. 189-195, 1974.
    [4] M. Ramdani, E. Sicard, A. Boyer, S. Ben Dhia, J. J. Whalen, T. H. Hubing, et al., "The electromagnetic compatibility of integrated circuits—Past, present, and future," Electromagnetic Compatibility, IEEE Transactions on, vol. 51, pp. 78-100, 2009.
    [5] A. N. Yusoff, M. Abdullah, S. Ahmad, S. Jusoh, A. Mansor, and S. Hamid, "Electromagnetic and absorption properties of some microwave absorbers," Journal of Applied Physics, vol. 92, pp. 876-882, 2002.
    [6] D. Polder and J. Smit, "Resonance phenomena in ferrites," Reviews of Modern Physics, vol. 25, p. 89, 1953.
    [7] K. Kim, W. Kim, Y. Ju, and H. Jung, "Effect of addition of the CuO-Fe2O3 system on the electromagnetic wave absorbing properties of sintered ferrite," Journal of materials science, vol. 27, pp. 4741-4745, 1992.
    [8] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, and M. Zhao, "Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material," Journal of magnetism and magnetic materials, vol. 212, pp. 175-177, 2000.
    [9] A. Abdeen, "Electric conduction in Ni–Zn ferrites," Journal of magnetism and magnetic materials, vol. 185, pp. 199-206, 1998.
    [10] Y. Matsuo, M. Inagaki, T. Tomozawa, and F. Nakao, "High performance NiZn ferrite," Magnetics, IEEE Transactions on, vol. 37, pp. 2359-2361, 2001.
    [11] D.-Y. Kim and Y.-C. Chung, "Electromagnetic wave absorbing characteristics of Ni-Zn ferrite grid absorber," Electromagnetic Compatibility, IEEE Transactions on, vol. 39, pp. 356-361, 1997.
    [12] M. J. Treacy, T. Ebbesen, and J. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," NATURE, vol. 381, pp. 678-680, 1996.
    [13] J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, et al., "Elastic and shear moduli of single-walled carbon nanotube ropes," Physical review letters, vol. 82, p. 944, 1999.
    [14] A. Rinzler, J. Hafner, P. Nikolaev, L. Lou, S. Kim, D. Tomanek, et al., "Unraveling nanotubes: field emission from an atomic wire," SCIENCE-NEW YORK THEN WASHINGTON, vol. 269, pp. 1550-1550, 1995.
    [15] G. Pirio, P. Legagneux, D. Pribat, K. Teo, M. Chhowalla, G. Amaratunga, et al., "Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode," Nanotechnology, vol. 13, p. 1, 2002.
    [16] K. A. Dean and B. R. Chalamala, "Current saturation mechanisms in carbon nanotube field emitters," Applied Physics Letters, vol. 76, pp. 375-377, 2000.
    [17] 孔守中, "鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究," 中原大學化學研究所學位論文, pp. 1-112, 2003.
    [18] M. Zong, Y. Huang, and N. Zhang, "Reduced graphene oxide–Ni 0.5 Zn 0.5 Fe 2 O 4 composite: Synthesis and electromagnetic absorption properties," Materials Letters, vol. 145, pp. 115-119, 2015.
    [19] 李宗哲, "金屬複合奈米粒子於電磁波吸收之研究," 國立成功大學化學工程學系學位論文, pp. 23-57, 2007.
    [20] W. F. Smith, 材料科學與工程: 高立出版, 1994.
    [21] 顏雅侖 and Y.-L. Yen, "錳鋅鐵氧化物磁性流體之製備及分散研究," 國立成功大學資源工程學系學位論文, pp. 5-91, 2002.
    [22] 陳文照, 曾春風, and 游信和, "材料科學與工程導論," 高力圖書有限公司, 台灣新北市, 2005.
    [23] A. Kumar, A. Singh, M. Yadav, M. Arora, and R. Pant, "Finite size effect on Ni doped nanocrystalline Ni x Zn 1− x Fe 2 O 4 (0.1≤ x≤ 0.5)," Thin Solid Films, vol. 519, pp. 1056-1058, 2010.
    [24] 陳均達, "鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究," 臺灣師範大學物理學系學位論文, pp. 1-51, 2012.
    [25] M. Barsoum and M. Barsoum, Fundamentals of ceramics vol. 1: CRC press, 2002.
    [26] W. Deer, R. Howie, and J. Zussman, "An introduction to rock forming materials," ed: Longman, London, 1992.
    [27] B. D. Cullity and C. D. Graham, Introduction to magnetic materials vol. 2: John Wiley & Sons, 2011.
    [28] 王聖廷, "添加劑對鎳鋅鐵氧磁體特性之影響," 大同大學材料工程學系所學位論文, pp. 1-64, 2007.
    [29] 余宣賦 and 程冠博, "磁性陶瓷粉末," 科學發展月刊 vol. 408, pp. 18-23, 2006.
    [30] 江明彥, "NiO/NiFe2O4 奈米複合材料之合成與磁性之研究," 南台科技大學機械工程學系學位論文, pp. 9-28, 2005.
    [31] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C 60: buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
    [32] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, pp. 56-58, 1991.
    [33] P. G. Collins and P. Avouris, "Nanotubes for electronics," Scientific american, vol. 283, pp. 62-69, 2000.
    [34] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Structure and electronic properties of carbon nanotubes," The Journal of Physical Chemistry B, vol. 104, pp. 2794-2809, 2000.
    [35] C. Li and T.-W. Chou, "Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces," Composites Science and Technology, vol. 63, pp. 1517-1524, 2003.
    [36] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
    [37] P. Wiles and J. Abrahamson, "Carbon fibre layers on arc electrodes their properties and cool-down behaviour," Carbon, vol. 16, pp. 341-349, 1978.
    [38] 陳宏立 and 賴光哲, "常用之工業機箱散熱網孔之型式與尺寸對於 EMI/EMC 之效果與影響," 大學大學機械工程學系學位論文, pp. 11-37, 2006.
    [39] 許智堯, "分析改善印刷電路板之布線輻射電磁干擾," 明新科技大學電機工程學系學位論文, pp. 4-17, 2010.
    [40] 簡宏誌, "傳導型電磁干擾濾波器設計之研究," 國立高雄應用科技大學電能與控制學系學位論文, pp. 4-22, 2005.
    [41] 林明星, 電磁相容理論與實務: 全華圖書, 2007.
    [42] A. Kruesubthaworn, R. Sivaratana, V. Ungvichian, and A. Siritaratiwat, "Testing parameters of TMR heads affected by dynamic-tester induced EMI," Journal of Magnetism and Magnetic Materials, vol. 316, pp. 142-144, 2007.
    [43] GWINSTEK, "EMI認證測試品質之最佳解決方案," pp. 1-10, 1975.
    [44] D. K. Cheng, Field and wave electromagnetics vol. 2: Addison-wesley New York, 1989.
    [45] 楊芷瑀, "具電磁波遮蔽效應之奈米石墨烯/水性聚胺酯奈米複合材料之製備及其特性之研究," 清華大學化學工程學系學位論文, pp. 1-217, 2015.
    [46] 石天威, "聚酯/不銹鋼紗的電磁性質及其織物結構對電磁遮蔽特性之探討 " 逢甲大學紡織工程研究所學位論文, pp. 5-30, 2006.
    [47] S. Foner, "Versatile and Sensitive Vibrating‐Sample Magnetometer," Review of Scientific Instruments, vol. 30, pp. 548-557, 1959.
    [48] D. Klement, J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computations of complicated objects," Antennas and Propagation, IEEE Transactions on, vol. 36, pp. 228-237, 1988.
    [49] Y. Liu, J.-j. Li, F.-f. Min, J.-b. Zhu, and M.-x. Zhang, "Microwave-assisted synthesis and magnetic properties of Ni 1− x Zn x Fe 2 O 4 ferrite powder," Journal of Magnetism and Magnetic Materials, vol. 354, pp. 295-298, 2014.

    無法下載圖示 校內:2021-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE