| 研究生: |
鄭永佶 Jang, Yung-Ji |
|---|---|
| 論文名稱: |
奈米碳管/鎳鋅鐵氧體混合材料之研製與EMI應用 Manufacture of Absortion Material WCNT/(Ni1-xZnx)Fe2O4 and Application for EMI |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 吸波材料 、EM 、鎳鋅鐵氧體 |
| 外文關鍵詞: | absorption materials, EMI, (Ni0.5Zn0.5)Fe2O4 |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗第一部份利用固態合成法(Solid-state method)來備製鎳鋅鐵氧體(Ni1-xZnx)Fe2O4,首先探討(Ni1-xZnx)Fe2O4,x為大範圍取代(x= 0、0.3、0.5、0.7、1)之微結構與磁特性,由實驗得知當取代比例為x=0.5時,可以使材料獲得最大飽和磁化量52.45 emg/g、最小半高寬0.046及最大導磁係數3.3561。接著探討不同溫度對(Ni0.5Zn0.5)Fe2O4磁滯曲線之影響,由實驗得知溫度上升會造成飽和磁化量上升,當溫度為1100℃時有著最大飽和磁化量65.774 emg/g、最小半高寬0.052及最大導磁係數4.26。
第二部份以ABS膠與(Ni1-xZnx)Fe2O4及(Ni1-xZnx)Fe2O4/多壁奈米碳管(WCNT)複合物備製出15cm^15cm之複合試片,並探討2-18GHz微波頻段之電磁波遮蔽特性。首先探討ABS/(Ni1-xZnx)Fe2O4複合試片,此組試片在鎳鋅鐵養體為50t%試片時最大遮蔽值為-26.7dB主要遮蔽頻率為6.375GHz。接著探討試片厚度對遮蔽之影響,由結果顯示厚度的提昇,會使得整體遮蔽頻段往低頻移動,同時發現遮蔽頻寬隨著厚度增加而減小。最後探討ABS /(Ni1-xZnx)Fe2O4/ (WCNT)複合試片,從結果發現4wt%試片在13.25GHz,有最大遮蔽值-22.7dB,也顯示出多壁奈米碳管的摻入有利於介電常數整體提升,並使得遮蔽頻段往更高頻推動。
根據本論文可以充分了解,在高頻下遮蔽機制以介電損失為主,若要依據特定頻段設計出相對應之遮蔽材料,必須遵守以下;了解主要遮蔽頻率適當控制試片厚度,使得頻率厚度乘積為定值,如果需要增強遮蔽能力可以由摻雜量多寡下手,同時注意到塑膠窄體是否能夠完整支撐摻雜量。
The shielding effect of (Ni1-xZnx)Fe2O4 ( x=0、0.3、0.5、0.7、1) electromagnetic wave absorption materials are discussed in this paper. The Electromagnetic wave absorption materials by the conventional solid-state route were prepared. We discuss doping effect about Hysteresis curve. As x arrived 0.5, it showed a excellent properties like Saturated magnetization Ms=52.45 emg/g, Coercivity Hc=12.13 A/m, Full width at half maximum FWHM=0.046 and Relative Permeability coefficient μ=3.3561 . Then, we discuss temperature effect about Hysteresis curve and XRD. The experimental results show that (Ni0.5Zn0.5)Fe2O4 high-temperature processing at 1100℃ for 4 hours has the best properties like Saturated magnetization Ms=65.774 emg/g, Coercivity Hc=24.2 A/m, Full width at half maximum FWHM=0.052 and Relative Permeability coefficient μ=4.26. Finally, we designed and fabricated a EM shielding sheet (15cm x 15cm) by reflection loss (RL) measurements in the frequency ranges of 2-18GHz. According to the results of measurements, The ABS/ (Ni0.5Zn0.5)Fe2O4 shielding effect can arrive -26.7dB at content of 50wt% , It was found that absorption frequency and thick were in inverse proportion, and the ABS/ (Ni0.5Zn0.5)Fe2O4/WCNT shielding effect can arrive -22.7dB at content of 4wt%. According to this paper can fully understand, If we’d like to design EM wave shielding materials, we must control thick and the concentration of the material to achieve the desired.
[1] C. R. Paul, Introduction to electromagnetic compatibility vol. 184: John Wiley & Sons, 2006.
[2] T. Hubing, J. Drewniak, T. Van Doren, and N. Kashya, "An expert system approach to EMC modeling," in Electromagnetic Compatibility, 1996. Symposium Record. IEEE 1996 International Symposium on, 1996, pp. 200-203.
[3] M. L. Crawford, "Generation of standard EM fields using TEM transmission cells," Electromagnetic Compatibility, IEEE Transactions on, pp. 189-195, 1974.
[4] M. Ramdani, E. Sicard, A. Boyer, S. Ben Dhia, J. J. Whalen, T. H. Hubing, et al., "The electromagnetic compatibility of integrated circuits—Past, present, and future," Electromagnetic Compatibility, IEEE Transactions on, vol. 51, pp. 78-100, 2009.
[5] A. N. Yusoff, M. Abdullah, S. Ahmad, S. Jusoh, A. Mansor, and S. Hamid, "Electromagnetic and absorption properties of some microwave absorbers," Journal of Applied Physics, vol. 92, pp. 876-882, 2002.
[6] D. Polder and J. Smit, "Resonance phenomena in ferrites," Reviews of Modern Physics, vol. 25, p. 89, 1953.
[7] K. Kim, W. Kim, Y. Ju, and H. Jung, "Effect of addition of the CuO-Fe2O3 system on the electromagnetic wave absorbing properties of sintered ferrite," Journal of materials science, vol. 27, pp. 4741-4745, 1992.
[8] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, and M. Zhao, "Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material," Journal of magnetism and magnetic materials, vol. 212, pp. 175-177, 2000.
[9] A. Abdeen, "Electric conduction in Ni–Zn ferrites," Journal of magnetism and magnetic materials, vol. 185, pp. 199-206, 1998.
[10] Y. Matsuo, M. Inagaki, T. Tomozawa, and F. Nakao, "High performance NiZn ferrite," Magnetics, IEEE Transactions on, vol. 37, pp. 2359-2361, 2001.
[11] D.-Y. Kim and Y.-C. Chung, "Electromagnetic wave absorbing characteristics of Ni-Zn ferrite grid absorber," Electromagnetic Compatibility, IEEE Transactions on, vol. 39, pp. 356-361, 1997.
[12] M. J. Treacy, T. Ebbesen, and J. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," NATURE, vol. 381, pp. 678-680, 1996.
[13] J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, et al., "Elastic and shear moduli of single-walled carbon nanotube ropes," Physical review letters, vol. 82, p. 944, 1999.
[14] A. Rinzler, J. Hafner, P. Nikolaev, L. Lou, S. Kim, D. Tomanek, et al., "Unraveling nanotubes: field emission from an atomic wire," SCIENCE-NEW YORK THEN WASHINGTON, vol. 269, pp. 1550-1550, 1995.
[15] G. Pirio, P. Legagneux, D. Pribat, K. Teo, M. Chhowalla, G. Amaratunga, et al., "Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode," Nanotechnology, vol. 13, p. 1, 2002.
[16] K. A. Dean and B. R. Chalamala, "Current saturation mechanisms in carbon nanotube field emitters," Applied Physics Letters, vol. 76, pp. 375-377, 2000.
[17] 孔守中, "鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究," 中原大學化學研究所學位論文, pp. 1-112, 2003.
[18] M. Zong, Y. Huang, and N. Zhang, "Reduced graphene oxide–Ni 0.5 Zn 0.5 Fe 2 O 4 composite: Synthesis and electromagnetic absorption properties," Materials Letters, vol. 145, pp. 115-119, 2015.
[19] 李宗哲, "金屬複合奈米粒子於電磁波吸收之研究," 國立成功大學化學工程學系學位論文, pp. 23-57, 2007.
[20] W. F. Smith, 材料科學與工程: 高立出版, 1994.
[21] 顏雅侖 and Y.-L. Yen, "錳鋅鐵氧化物磁性流體之製備及分散研究," 國立成功大學資源工程學系學位論文, pp. 5-91, 2002.
[22] 陳文照, 曾春風, and 游信和, "材料科學與工程導論," 高力圖書有限公司, 台灣新北市, 2005.
[23] A. Kumar, A. Singh, M. Yadav, M. Arora, and R. Pant, "Finite size effect on Ni doped nanocrystalline Ni x Zn 1− x Fe 2 O 4 (0.1≤ x≤ 0.5)," Thin Solid Films, vol. 519, pp. 1056-1058, 2010.
[24] 陳均達, "鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究," 臺灣師範大學物理學系學位論文, pp. 1-51, 2012.
[25] M. Barsoum and M. Barsoum, Fundamentals of ceramics vol. 1: CRC press, 2002.
[26] W. Deer, R. Howie, and J. Zussman, "An introduction to rock forming materials," ed: Longman, London, 1992.
[27] B. D. Cullity and C. D. Graham, Introduction to magnetic materials vol. 2: John Wiley & Sons, 2011.
[28] 王聖廷, "添加劑對鎳鋅鐵氧磁體特性之影響," 大同大學材料工程學系所學位論文, pp. 1-64, 2007.
[29] 余宣賦 and 程冠博, "磁性陶瓷粉末," 科學發展月刊 vol. 408, pp. 18-23, 2006.
[30] 江明彥, "NiO/NiFe2O4 奈米複合材料之合成與磁性之研究," 南台科技大學機械工程學系學位論文, pp. 9-28, 2005.
[31] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C 60: buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
[32] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, pp. 56-58, 1991.
[33] P. G. Collins and P. Avouris, "Nanotubes for electronics," Scientific american, vol. 283, pp. 62-69, 2000.
[34] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Structure and electronic properties of carbon nanotubes," The Journal of Physical Chemistry B, vol. 104, pp. 2794-2809, 2000.
[35] C. Li and T.-W. Chou, "Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces," Composites Science and Technology, vol. 63, pp. 1517-1524, 2003.
[36] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
[37] P. Wiles and J. Abrahamson, "Carbon fibre layers on arc electrodes their properties and cool-down behaviour," Carbon, vol. 16, pp. 341-349, 1978.
[38] 陳宏立 and 賴光哲, "常用之工業機箱散熱網孔之型式與尺寸對於 EMI/EMC 之效果與影響," 大學大學機械工程學系學位論文, pp. 11-37, 2006.
[39] 許智堯, "分析改善印刷電路板之布線輻射電磁干擾," 明新科技大學電機工程學系學位論文, pp. 4-17, 2010.
[40] 簡宏誌, "傳導型電磁干擾濾波器設計之研究," 國立高雄應用科技大學電能與控制學系學位論文, pp. 4-22, 2005.
[41] 林明星, 電磁相容理論與實務: 全華圖書, 2007.
[42] A. Kruesubthaworn, R. Sivaratana, V. Ungvichian, and A. Siritaratiwat, "Testing parameters of TMR heads affected by dynamic-tester induced EMI," Journal of Magnetism and Magnetic Materials, vol. 316, pp. 142-144, 2007.
[43] GWINSTEK, "EMI認證測試品質之最佳解決方案," pp. 1-10, 1975.
[44] D. K. Cheng, Field and wave electromagnetics vol. 2: Addison-wesley New York, 1989.
[45] 楊芷瑀, "具電磁波遮蔽效應之奈米石墨烯/水性聚胺酯奈米複合材料之製備及其特性之研究," 清華大學化學工程學系學位論文, pp. 1-217, 2015.
[46] 石天威, "聚酯/不銹鋼紗的電磁性質及其織物結構對電磁遮蔽特性之探討 " 逢甲大學紡織工程研究所學位論文, pp. 5-30, 2006.
[47] S. Foner, "Versatile and Sensitive Vibrating‐Sample Magnetometer," Review of Scientific Instruments, vol. 30, pp. 548-557, 1959.
[48] D. Klement, J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computations of complicated objects," Antennas and Propagation, IEEE Transactions on, vol. 36, pp. 228-237, 1988.
[49] Y. Liu, J.-j. Li, F.-f. Min, J.-b. Zhu, and M.-x. Zhang, "Microwave-assisted synthesis and magnetic properties of Ni 1− x Zn x Fe 2 O 4 ferrite powder," Journal of Magnetism and Magnetic Materials, vol. 354, pp. 295-298, 2014.
校內:2021-06-30公開