| 研究生: |
黃偉晉 Huang, wei-chin |
|---|---|
| 論文名稱: |
n型通道之高電壓電晶體特性及其可靠度之研究 Characteristics and Reliability of n-channel High-Voltage Transistors |
| 指導教授: |
陳志方
Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 可靠度 、電晶體 、熱載子 、n型通道 、高壓元件 |
| 外文關鍵詞: | n channel, hot carrier, mosfet, high voltage, reliability |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,高壓積體電路的應用日益增加,並由於n型通道橫向擴散金氧半場效電晶體的製程與傳統的低壓元件相容,因此橫向擴散金氧半場效電晶體被廣泛地應用在高壓整合積體電路當中。也因為元件操作在高閘極及高汲極電壓下,熱載子可靠度成為極重要的議題。本篇論文,將會針對n型通道橫向擴散金氧半場效電晶體之元件特性及其可靠度,做一個研究及探討。
高壓元件希望具有兩個主要特性:低的導通電阻及高的崩潰電壓。由參考文獻及過去的實驗中得知,增大輕摻雜區域的長度可以提高元件的崩潰電壓,但也會造成導通電阻的上升,在兩者之間我們必須取得一個平衡。本篇論文將內容分成五個章節進行討論。
首先,第一章將對高壓元件及運用做大概的描述與介紹,並介紹何謂熱載子效應及克爾克效應。第二章則是介紹實驗中所使用之元件與量測的各個參數,以及量測的方法與步驟,並說明stress的方法與其用意。
第三章則是討論元件特性及退化的情形。由實驗中發現,導通電阻的退化大小與基極電流的大小有著正相關的關係,且元件退化隨著stress時間的增加會有達到飽和的趨勢,在某些情況下甚至出現元件特性回復的現象。在發覺此現象後,接著討論為何會發生元件特性回復的現象,也進一步去找出在何種操作情況下才會發生此現象,也希望能推測出元件退化過程及特性回復現象的原因或機制。
第四章則是針對不同尺寸的元件做比較,去觀察當元件尺寸改變時對元件的特性及其退化現象有著怎樣的影響,這對於把元件最佳化有極大的幫助。
第五章則是將實驗做個結論,並提出論文中尚可繼續研究的方向,以待將來做更深入的探討及研究。
In recent years, applications of high voltage integrated circuits are on the increase day by day. LDMOS transistors have been widely used in high voltage integrated circuits. That is due to its process flow being compatible with traditional low voltage CMOS devices. LDMOS transistors are operated under high gate and drain voltage, thus hot carrier reliability becomes a serious issue. In this thesis, the device characteristics and hot-carrier reliability of LDMOS transistors will be investigated.
There are two important features in high-voltage(HV) devices. One is low on-resistance (Ron) and the other is high breakdown voltage (VBV). As we know, increasing the length of drift region could get higher breakdown voltage, but it also causes a rise of on-resistance. We will discuss the effects of different device dimension in the following five chapters.
In Chapter 1, there will be some introductions of HV devices and its applications, and we also introduce the background of hot-carrier effect and Kirk effect. In Chapter 2, we will show all the parameters extracted from our experiments, measurement methodology, stress methodology, and device structure in our experiments. Then, we will discuss device parameters and degradation in Chapter 3. From our experiments, we discover that Ron degradation is related to the first Isub peak magnitude, and saturation in degradation was found in long time stress. In particular condition, recovery phenomena of device characteristics would happen. After discovering the phenomena, we discuss what cause the phenomena happen, and in what kind of condition. Finally, we try to find out the mechanism.
We choose different kinds of device dimension for comparing characteristics and degradation in chapter 4. It is useful for optimizing devices.
In Chapter 5, a conclusion and a future work will be presented for further investigation.
[1] Kazutoshi Nakamura, Toshiyuki Naka, Kenichi Matsushita, Yomoko Matsudai, Norio Yasuhara, Koichi Endo, Fumito Suzuki, and Akio Nakagawa “Optimization of 5V power device based on CMOS for hot-carrier degradation,” International Symposium on Power Semiconductor Device & IC’s, May 23-26, 2005.
[2] A. Moscatelli, A. Merlini, G. Croce, P. Galbiati, and C. Contiero, “LDMOS implementation in a 0.35μm BCD technology (BCD6),”ISPSD, pp.323, 2000.
[3] R. Versari, A. Pieracci, “Experimental study of hot-carrier effects in LDMOS transistors,” IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1228, June 1999.
[4] M. S. Shekar, R. K. Williams, M. Cornell, M.-Y. Luo, and M. Darwish, “Hot electron degradation and unclamped inductive switching in submicron 60-V lateral DMOS,” IRPS, pp. 383, 1998.
[5] A. W. Ludikhuize, M. Slotboom, A. Nezar, N. Nowlin, and R. Brock, “Analysis of hot-carrier-induced degradation and snapback in submicron 50V lateral MOS transistors,” ISPSD, pp. 53, 1997.
[6] R. Versari, A. Pieracci, S. Manzini, C. Contiero, and B. Ricco, “Hot-carrier reliability in submicron LDMOS transistors,” IEDM Tech. Dig., pp. 371, 1997.
[7] C. Y. Chang and S. M. Sze, “ULSI Technology,” (1996).
[8] C. Hu, “Advanced MOS Device Physics,” in VLSI Electronic Microstructure Science, 18, Academic Press, New York, Chapter3 (1989).
[9] S.M. Sze, “Physics of Semiconductor Device,” Wiley (1981)
[10] Ben G. Streetman, Sanjay Banerjee, “Solid state electronic device,” 5thed, Prentice Hall (2000)
[11] Yuan Taur, Tak h. Ning, ”Fundamentals of modern VLSI devices,” Cambridge (1998)
[12] A.W. Ludikhuize, “Kirk effect limitations in high voltage IC’s,” IEEE, pp.249 (1994)
[13] 國立成功大學論文 “Development and Hot-Carrier Reliability Study of Integrated High-Voltage MOSFET Transistors,” Kuo-Ming Wu.
[14] J. J. Liou, A. Ortiz-Conde and F. Garcia Sanchez, “Extraction of the Threshold Voltage of MOSFETs: an Overview,” IEEE IEDM, pp.31-38 (1997).
[15] R. A. Chapman et al., “An 0.8 μm CMOS Technology for High Performance Logic Applications,” Tech. Dig. IEDM, pp.362 (1987).
[16] Stanley Wolf, “Silicon Processing for the VLSI Era,” Volume 3: The Submicron Mosfet (1995).
[17] T. Y. Chan, C. I. Chiang, and H. Gaw, “New Insight into Hot-Electron-Induced Degradation of n-MOSFETs,” Tech. Dig. IEDM, pp.196 (1988).
[18] Ronald E. Paulsen, “Theory and Application of Charge Pumping for the Characterization of Si-Si02 Interface and Near-Interface Oxide Traps,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1213, July 1994.
[19] M. Sellami, “A Three-Level Charge Pumping Model for Submicronic MOSFET Interface Defaults Simulation,” Internationa1 Conference on Solid Dielectrics, Toulouse, France, July 5-9, 2004.
[20] F. Bauwens, “Locating hot carrier injection in n-type DeMOS transistor by Charge Pumping and 2D device simulations,” Microelectronics Reliability 44 (2004), pp.1625-1629.
[21] Guido Groeseneken, “Basics and applications of charge pumping in submicron MOSFETs,” Microelectronics Reliability 38 (1998), pp.1379-1389.
[22] 國立成功大學論文 “Hot Carrier Reliability of n-channel Lateral Diffused Metal Oxide Semiconductor Field Effect Transistor (LDMOS),” Kuang-Wan Lin.
[23] 國立成功大學論文 “Characteristics and Hot Carrier Reliability of n-channel Lateral Diffused Metal Oxide Semiconductor (LDMOS) Transistors with Different NDD Dosage” by Kuen-Shiuan Tian.
[24] 國立成功大學論文 “Hot Carrier Reliability of 12V High Voltage n-LDMOS Transistors,” Shiang-Yu Chen.