簡易檢索 / 詳目顯示

研究生: 黃素鈴
Huang, Su-Ling
論文名稱: 電流導向式數位類比轉換器之設計及其線性度內建自我測試
The Design and Linearity Built-In Self-Test of Current-Steering Digital-to-Analog Converters
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 87
中文關鍵詞: 電流導向式數位類比轉換器內建自我測試
外文關鍵詞: built-in self-test, BIST, D/A, DACs, current-steering digital-to-analog converters
相關次數: 點閱:142下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討一個可操作在500MHz十位元的電流導向式數位類比轉換器的設計、分析與實現。此設計使用台積電 0.18 微米製程實現。晶片實際量測結果顯示,差分非線性誤差和積分非線性誤差,分別小於0.35和0.6最小位元。在500MHz的取樣頻率和訊號頻率為25MHz下,SFDR為60.63dB,功率消耗為28mW,核心電路的面積為0.4536 mm2。
    此外,本論文也針對電流導向式數位類比轉換器的線性度測試,提出一個電流式內建自我測試的方法。此架構主要由電流相減電路和電流控制震盪器所組成。藉由量測電流差和搭配selected-code 測試方法,將可大大降低數位類比轉換器所需耗費的測試時間,並且減少高精確度量測儀器的需求,故可以減少相當可觀的測試成本。

    This thesis presents the design concept, circuit analysis, and practical considerations of implementation for a 10-bit 500-MSample/s current steering digital-to-analog converter. It is fabricated in TSMC standard 0.18-m 1P6M CMOS process. The measured results show that the differential nonlinearity (DNL) is less than 0.35 LSB (Least Significant Bit), and the integral nonlinearity (INL) is less than 0.6 LSB. The spurious free dynamic range (SFDR) is 60.63 dB with a 25-MHz input signal at a 500-MS/s sampling rate. The power consumption is 28 mW, and the core area is 0.4536 mm2.
    Moreover, a current-mode Built-In Self-Test (BIST) scheme is proposed for on-chip estimating static non-linearity errors in current-steering digital-to-analog converters. This scheme includes the current subtraction circuit to increase the sampling current accuracy and the selected-code method to reduce the testing time. As a result, the proposed method can greatly shorten the test time and relax the demands on high precision test equipments, and consequently reduce test cost significantly.

    List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Digital-to-Analog Converters (DACs) 5 2.1 Introduction of DACs 5 2.2 The DAC as a Black Box 6 2.3 DAC Performance Metrics 7 2.3.1 Static Performance 8 2.3.2 Dynamic Performance 11 2.4 Review DAC Architectures 15 2.4.1 The Resistor DAC 16 2.4.2 The Capacitor DAC 19 2.4.3 The Current-Steering DAC 21 2.5 Summary 24 Chapter 3 Implementation of a 10-bit 500-MSample/s Current-Steering DAC 25 3.1 The Architecture of the DAC 25 3.2 Design of the Unit Current Cell 27 3.3.1 INL Yield 28 3.3.2 The Area of the Unit Current Source Transistor 30 3.3 Design of the Deglitch Latch 34 3.4 Design of the Thermometer Decoder 37 3.5 The Switching Scheme 39 3.6 The Layout 40 3.7 Simulation Results 43 3.8 Measurement Results 46 3.9 Summary 51 Chapter 4 A Current-Mode BIST Scheme for DAC Linearity Based on Selected-Code Testing 52 4.1 Introduction 52 4.2 Testing Scheme 53 4.2.1 Step Size of Modified Segmented Transitions 54 4.2.2 Estimation of All-Code Step Sizes from the Step Sizes 55 4.2.3 Computation of DNL from All-Code Step Sizes 57 4.2.4 Computation of INL from DNL 58 4.3 Circuit Design 58 4.3.1 DAC 58 4.3.2 Sample-and-Difference Circuit 61 4.3.3 ICO 66 4.3.4 Frequency Measurement and Counter 68 4.4 Simulation Results 70 4.4.1 ICO 70 4.4.2 BIST Scheme 71 4.4.3 The Effect of Vdd Noise on BIST Scheme 77 4.5 Summary 81 Chapter 5 Conclusions and Future Work 82 Bibliography 84

    [1]A. V. den Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s nyquist current-steering CMOS D/A converters,” IEEE J. Solid-State Circuits, vol. 36, pp. 315-324, March 2001.
    [2]K. Arabi, B. Kaminska, and J. Rzeszut, “A built-in-self-test approach for medium to high-resolution digital-to-analog converters,” in Proc. Third Asiani Test Symposium, 1994, pp. 373-378.
    [3]K. Arabi, B. Kaminska, and J. Rzeszut, “BIST for D/A and A/D converters,” in Proc. IEEE Des. Test Comput., 1996, pp. 40-49.
    [4]K. Arabi, B. Kaminska, and M. Sawan, “On chip testing data converters using static parameters,” IEEE Trans. Very Large Scale Integr. Syst., vol. 6, no. 3, pp. 409-418, September 1998.
    [5]Y. C. Wen and K. J. Lee, “BIST structure for DAC testing,” Electronic Letters, vol. 34, no. 12, pp. 1173-1174, June 1998.
    [6]I. H. S. Hassan, K. Arabi, and B. Kaminska, “Testing digital to analog converters based on oscillation test strategy using sigma-delta modulation,” in Proc. Int. Conf. Comput. Des., 1998, pp. 40-46.
    [7]J. L. Huang, C. K. Ong, and K. T. Cheng, “A BIST scheme for on-chip ADC and DAC testing,” in Proc. IEEE Des., Automat. Test Europe Conf. Exhibition, 2000, pp. 216-220.
    [8]S. J. Chang, C .L. Lee, and J. E. Chen, “BIST structure for DAC testing,” Electronic Letters, vol. 38, no. 15, pp. 776-777, July 2002.
    [9]K. P. S. Rafeeque and V. Vasudevan, “A built-in-self-test scheme for digital to analog converters,” in Proc. Int. Conf. Very Large Scale Integr. Des., 2004, pp. 1027-1032.
    [10]D. Johns and K. Martin, Analog integrated circuit design. New York: Wiley, 1997.
    [11]A. Van den Bosch, M. Steyaert, and W. Sansen, Static and dynamic performance limitations for high speed D/A converters, Boston MA: Kluwer Academic, 2004.
    [12]C. H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6m2,” IEEE J. Solid-State Circuits, vol. 33, pp. 1948-1958, December 1998.
    [13]J. Bastos, M. Steyaert, and Willy Sansen, “A high yield 12-bit 250-MS/s CMOS D/A Converter,” in Proc. IEEE Cust. Int. Circuits Conf., May 1996, pp. 431-434.
    [14]J. Bastos, A. M. Marques, M. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, pp. 1959-1969, December 1998.
    [15]G. A. M. Van der Plas, J. Vandenbussche, and W. Sansen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, pp. 1708-1717, December 1999.
    [16]A. Van den Bosch, M. Steyaert, and W. Sansen, “An accurate statistical yield model for CMOS current-steering D/A converters,” in Proc. IEEE Int. Symp. Circuits and Syst., May 2000, pp. IV.105-IV.108.
    [17]M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, October 1989.
    [18]K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copland, “Characterization and modeling of mismatch in MOS transistor for precision analog design,” IEEE J. Solid-State Circuits, vol. 21, pp. 1057-1066, December 1986.
    [19]A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high-speed high-resolution current-steering CMOS D/A converters,” in Proc. IEEE Int. Conf. Electron., Circuits and Systems, September 1999, pp. 1193-1196.
    [20]R. L. Chen, “A 10-bit 1-GSample/s current-steering digital-to-analog converter,” Master Thesis, National Cheng Kung University, Tainan, Taiwan, July 2005.
    [21]M. Burns and G.W. Roberts, An introduction to mixed-signal IC test and measurement, New York: Oxford, 2001.
    [22]S. J. Daubert, D. Vallancourt, and Y. P. Tsividis, “Current copier cells,” Electronics Letters, vol. 24, pp. 1560-1562, December 1988.
    [23]D. Vallancourt, Y. P. Tsividis, and S. J. Daubert, “Sampled-current circuits,” in Proc. IEEE Int. Symp. Circuits and Syst., 1989, pp. 1592-1595.
    [24]C. Toumazou, J. B. Hughes, and D. M. Pattullo, “A regulated cascode switched-current memory cell,” Electronics Letters, vol. 26, pp. 303-304, March 1990.
    [25]J. H. Tsai, M. J. Hsiao, and T. Y. Chang, “An embedded built-in-self-test approach for digital-to-analog converters,” in Proc. 10th Asia Test Symp., 2001, pp. 423-428.
    [26]K. P. S. Rafeeque and V. Vasudevan, “A built-in-self-test scheme for segmented and binary weighted DACs,” J. Electron. Testing: Theory and Applicat., pp. 623-638, 2004.
    [27]K. P. S. Rafeeque and V. Vasudevan, “A new technique for on-chip error estimation and reconfiguration of current-steering digital-to-analog converters,” IEEE Trans. Circuits Syst.Ⅰ, Reg. Papers, vol. 52, no. 11, pp. 2348-2357, November 2005.

    下載圖示 校內:2009-12-25公開
    校外:2011-12-25公開
    QR CODE