| 研究生: |
張少宇 Zhang, Shao-Yu |
|---|---|
| 論文名稱: |
深紅色螢光粉Ba2SrWO6:Mn4+與可調節色溫之單相暖白光材料Ba2SrWO6:Mn4+/Dy3+光致發光特性探討 The Photoluminescence of Deep-red-emitting Phosphor Ba2SrWO6:Mn4+ and Single-phased Warm White-light Phosphor Ba2SrWO6:Mn4+/Dy3+ with Tunable Correlated Color Temperature |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | Ba2SrWO6:Mn4+ 、Ba2SrWO6:Mn4+/Dy3+ 、深紅色螢光粉 、單相暖白光螢光粉 |
| 外文關鍵詞: | Ba2SrWO6:Mn4+, Ba2SrWO6:Mn4+/Dy3+, deep red phosphor, white-light-emitting phosphor, single-phased white-light-emitting phosphor |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以高溫固態反應法製備螢光材料,選用雙鈣鈦礦結構Ba2SrWO6作為主體材料,首先摻雜Mn4+離子少量取代主體材料之W6+離子後,探討深紅色螢光粉Ba2SrWO6:Mn4+之晶體結構與發光特性,並同時共摻雜Dy3+離子部分取代主體材料中之Sr2+離子後,製備出單相白光螢光粉Ba2SrWO6:Mn4+/Dy3+,研究其光譜變化及活化劑間能量轉移之情形,且透過調節不同活化劑濃度,改變色溫,最終製備出單相暖白光之螢光材料。
第一部分將研究紅色螢光材料Ba2SrWO6:Mn4+在不同煅燒溫度下,對於其晶體結構及光譜特性之影響。當溫度條件控制於900℃至1200℃時,經由XRD分析觀察出晶相沒有偏移之情況,代表材料有成功地被合成,且經由SEM分析觀察煅燒溫度上升,晶粒尺寸有隨之成長的情形,另外利用PLE分析得知其激發光波段落在250-550nm,因此本實驗利用紫外光雷射激發螢光材料並觀察光譜在煅燒溫度改變後,其光譜波長位置並無改變,但強度會隨之變化,因此藉由此分析確定螢光材料之最佳煅燒溫度位於1000℃。
第二部分研究紅色螢光材料Ba2SrWO6在摻雜不同Mn4+離子濃度後,對於晶體結構及光譜特性之影響。首先透過XRD、SEM與Raman光譜分析發現濃度改變並不會對於晶相、表面形貌與振動模態有太大影響,另外其放射光強度會隨著濃度變化而改變,最佳放射波長與濃度分別落在693 nm與0.6 mol%,而本研究探討活化劑中濃度淬滅機制,發現主要由電多極交互作用中偶極-偶極力所主導,最後利用公式計算出螢光材料之CIE色度座標為(0.7238, 0.2762),色純度為97.5%,證實成功製備出深紅色螢光材料Ba2SrWO6:Mn4+。
第三部分將紅色螢光材料Ba2SrWO6:Mn4+共摻雜Dy3+離子後,形成白光螢光材料Ba2SrWO6:Mn4+/ Dy3+,以325nm作為激發光源下,最佳Dy3+離子濃度落在1.8mol%,接著同樣利用公式計算出CIE色度座標為(0.4263, 0.3778),色溫(CCT)為3064K,落在暖白光區域,並利用改變Dy3+離子濃度,達到調節白光色溫之效果。接著探討共摻雜兩活化劑間能量轉移之情況,透過上述分析發現Mn4+離子激發光譜與Dy3+離子放射光譜有重疊之現象,初步預測兩活化劑將產生能量轉移之現象,最終本研究將單摻雜Mn4+離子與共摻雜Mn4+/Dy3+離子之放射光譜作對比,發現共摻雜Dy3+後,放射光強度有上升之現象,因此證實兩者活化劑間發生能量轉移之現象。
A novel deep red-light phosphor of Ba2SrWO6:Mn4+ with double-perovskite structure was synthesized by a high temperature solid state reaction method. In addition, we codoped with Dy3+ ion to form white-light phosphors of Ba2SrWO6:Mn4+/Dy3+. The excitation spectrum of BSWO:Mn4+ and BSWO:Mn4+/Dy3+ were both in the wavelength range of 250nm to 550 nm. Under 325nm excitation, the sample of BSWO:Mn4+ phosphor show deep red emission peak at 693 nm owing to the 2Eg → 4A2g transition of Mn4+ ions. Meanwhile, the white-light phosphor of BSWO:Mn4+/Dy3+ displayed a wide emission band, consisted of the blue emission at 492nm owing to 4F9/2 → 6H15/2 ,the yellow emission at 582nm owing to 4F9/2 → 6H13/2 and the red emission at 693nm. After we verified by a series of experiments, the optimum concentration of Mn4+ and Dy3+ ions were 0.6mol% and 1.8mol%. The CIE chromaticity coordinate of BSWO:Mn4+ was located at (0.7238, 0.2762) where was in the deep-red-light region. Moreover, we changed the concentration of Dy3+ ions and tuned the CIE chromaticity coordinate from white light (0.3365, 0.3493) to warm-white light (0.4263, 0.3778). Therefore, it was suitable for applying for warm white-light-emitting diodes.
[1] Y. Dai, S. Yang, Y. Shan, C.G. Duan, H. Peng, F. Yang, and Q. Zhao, "Single-composition white light emission from Dy3+ doped Sr2CaWO6," Materials Chemistry, vol. 12, no. 3, p. 431, 2019
[2] 劉如熹 、 劉宇桓, 發光二極體用氧氮螢光粉介紹
[3] S. Ye, F. Xiao, Y. Pan, Y. Ma, Q. J. M. S. Zhang, and E. R. Reports, "Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties," Materials Science and Engineering: R: Reports,vol. 71, no. 1, pp. 1-34, 2010.
[4] H. Xu, F. Hong, G. Liu, X. Dong, W. Yu, and J. J. O. M. Wang, "Green route synthesis and optimized luminescence of K2SiF6: Mn4+ red phosphor for warm WLEDs," Optical Materials, vol. 99, p. 109500, 2020.
[5] F. Hong, H. Xu, G. Pang, G. Liu, X. Dong, and W. J. C. E. J. Yu, "Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6: Mn4+ phosphor," Chemical Engineering Journal,vol. 390, p. 124579, 2020.
[6] H. Xu, F. Hong, G. Pang, G. Liu, X. Dong, J. Wang, W. Yu, "Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6: Mn4+ red phosphor," Journal of Luminescence, vol. 219, p. 116960, 2020.
[7] G. Hu, X. Hu, W. Chen, Y. Cheng, Z. Liu, Y. Zhang, X. Liang, W. Xiang, "Luminescence properties and thermal stability of red phosphor Mg2TiO4: Mn4+ additional Zn2+ sensitization for warm W-LEDs," Materials Research Bulletin, vol. 95, pp. 277-284, 2017.
[8] S. Adachi, "Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: a review," Journal of Luminescence, vol. 202, pp. 263-281, 2018.
[9] Y. Jin, Y. Fu, Y. Hu, L. Chen, H. Wu, G. Ju, M. He, T. Wang, "A high color purity deep red emitting phosphor SrGe4O9: Mn4+ for warm white LEDs," Powder Technology, vol. 292, pp. 74-79, 2016.
[10] Y. Lin, L. Zhao, B. Jiang, J. Mao, F. Chi, P. Wang, C. Xie, X. Wei, Y. Chen, M. Yi, "Temperature-dependent luminescence of BaLaMgNbO6: Mn4+, Dy3+ phosphor for dual-mode optical thermometry," Optical Materials, vol. 95, p. 109199, 2019.
[11] Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian and H. Zhong, "Self-assembled 3D flower-shaped NaY (WO4) 2: Eu3+ microarchitectures: microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties," CrystEngComm, vol. 14, no. 5, pp. 1760-1769, 2012.
[12] M. S. Wang and G. C. Guo, "Inorganic–organic hybrid white light phosphors," Chem. Commun., vol. 52, no. 90, pp. 13194-13204, 2016.
[13] W. T. Fu, Y. S. Au, S. Akerboom, D. J. W. IJdo, "Crystal structures and chemistry of double perovskites Ba2M (II) M′(VI) O6 (M= Ca, Sr, M′= Te, W, U)," Journal of Solid State Chemistry, vol. 181, no. 9, pp. 2523-2529, 2008.
[14] W. Ran, H. M. Noh, B. C. Choi, S. H. Park, J. H. Kim, J. H. Jeong, J. Shi, "Eu3+ doped (Li, Na, K) LaMgWO6 red emission phosphors: An example to rational design with theoretical and experimental investigation," Journal of Alloys and Compounds, vol. 785, pp. 651-659, 2019.
[15] J. Liang, B. Devakumar, L. Sun, Q. Sun, S. Wang, B. Li, D. Chen, X. Huang, "Mn4+-activated KLaMgWO6: a new high-efficiency far-red phosphor for indoor plant growth LEDs," Ceramics International, vol. 45, no. 4, pp. 4564-4569, 2019.
[16] R. Yu, D. S. Shin, K. Jang, Y. Guo, H. M. Noh, B. K. Moon, B. C. Choi, J. H. Jeong, S. S. Yi, "Luminescence and thermal-quenching properties of Dy3+-doped Ba2CaWO6 phosphors," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 125, pp. 458-462, 2014.
[17] 劉偉仁 LED螢光粉技術
[18] N. N. Zhang, C. Sun, X. M. Jiang, X.S. Xing, Y. Yan, L. Z. Cai, M. S. Wang and G. C. Guo, "Single-component small-molecule white light organic phosphors," Chem. Commun. vol. 53, no. 66, pp. 9269-9272, 2017.
[19] C. Xie, P. Wang, Y. Lin, X. Wei, M. Yin, Y. Chen, "Temperature-dependent luminescence of a phosphor mixture of Li2TiO3: Mn4+ and Y2O3: Dy3+ for dual-mode optical thermometry," Journal of Alloys and Compounds, vol. 821, p. 153467, 2020.
[20] V. Chandra and B. Chandra, "Suitable materials for elastico mechanoluminescence-based stress sensors," Optical Materials, vol. 34, no. 1, pp. 194-200, 2011.
[21] H. Choi, C.-H. Kim, C.-H. Pyun, and S. Kim, "Luminescence of (Ca, La) S: Dy," Journal of Luminescence, vol. 82, no. 1, pp. 25-32, 1999.
[22] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids. Oxford University Press, 2006.
[23] R. B. King, Encyclopedia of inorganic chemistry. 2016.
[24] G. Blasse and B. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)."
[25] R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, "A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: synthesis and luminescence properties," Ceramics International, vol. 42, no. 15, pp. 16817-16821, 2016.
[26] Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, and X. Huang, "Synthesis, crystal structure, and photoluminescence characteristics of high-efficiency deep-red emitting Ba2GdTaO6: Mn4+ phosphors," ACS Omega., vol. 4, no. 8, pp. 13474-13480, 2019.
[27] A. H. Kitai, Solid state luminescence: Theory, materials and devices. Springer Science & Business Media, 2012.
[28] T. L. Brown, H. E. LeMay, B. E. Bursten, and L. S. Brunauer, Chemistry: the central science. Prentice Hall Englewood Cliffs, NJ, 1997.
[29] D. Vij "Luminescence of solids," Springer Science & Business Media, 2012.
[30] Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, J. Jiang, "Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6: Mn4+ phosphor," Journal of Alloys and Compounds, vol. 695, pp. 221-226, 2017.
[31] Z. Song, J. Liao, X. Ding, X. Liu, and Q. Liu, "Synthesis of YAG phosphor particles with excellent morphology by solid state reaction," Journal of Crystal Growth, vol. 365, pp. 24-28, 2013.
[32] T. Peng, L. Huajun, H. Yang, C. J. M. C. Yan, and Physics, "Synthesis of SrAl2O4: Eu, Dy phosphor nanometer powders by sol–gel processes and its optical properties," Materials Chemistry and Physics, vol. 85, no. 1, pp. 68-72, 2004.
[33] M. Gomi and Kanie, Jpn. J. Appl. Phys., 35, 1798(1996)
[34] K. N. Kim, H.-K. Jung, H. D. Park, and D. Kim, "Synthesis and characterization of red phosphor (Y, Gd) BO 3: Eu by the coprecipitation method," Journal of Materials Research , vol. 17, no. 4, pp. 907-910, 2002.
[35] A. Ezzahi, B. Manoun, A. Ider , L. Bih, S. Benmokhtar, M. Azrour, M. Azdouz, J. M. Igartua, P. Lazor, "X-ray diffraction and Raman spectroscopy studies of BaSrMWO6 (M=Ni, Co, Mg) double perovskite oxides," Journal of Molecular Structure, vol. 985, no. 2-3, pp. 339-345, 2011.
[36] M. Kasha, "Characterization of electronic transitions in complex molecules," COMPLEX MOLECULES, vol. 9, pp. 14-19, 1950.
[37] C. Yang, Z. Zhang, G. Hu, R. Cao, X. Liang, W. Xiang, "A novel deep red phosphor Ca14Zn6Ga10O35: Mn4+ as color converter for warm W-LEDs: structure and luminescence properties," Journal of Alloys and Compounds, vol. 694, pp. 1201-1208, 2017.
[38] D. Chikte, S. Omanwar, and S. Moharil, "Luminescence properties of red emitting phosphor NaSrBO3: Eu3+ prepared with novel combustion synthesis method," Journal of Luminescence, vol. 142, pp. 180-183, 2013.
[39] J. Y. Park, J. S. Joo, H. K. Yang, M. Kwak, and Compounds, "Deep red-emitting Ca14Al10Zn6O35: Mn4+ phosphors for WLED applications," Journal of Alloys and Compounds, vol. 714, pp. 390-396, 2017.
[40] U. Caldiño, A. Lira, A. Meza-Rocha, I. Camarillo, and R. Lozada-Morales, "Development of sodium-zinc phosphate glasses doped with Dy3+, Eu3+ and Dy3+/Eu3+ for yellow laser medium, reddish-orange and white phosphor applications," Journal of Luminescence, vol. 194, pp. 231-239, 2018.
[41] L. Xi, Y. Pan, M. Zhu, H. Lian, and J. Lin, "Room-temperature synthesis and optimized photoluminescence of a novel red phosphor NaKSnF6: Mn 4+ for application in warm WLEDs," J. Mater. Chem. C, vol. 5, no. 36, pp. 9255-9263, 2017.
[42] Y. Li, J. Chen, and C. J. O. Chen, "Tunable correlated color temperature of NaSrPO4 phosphors via Dy3+ and Eu3+ co-doping for warm white light-emitting diodes," Optik, vol. 174, pp. 1-6, 2018.
[43] L. Zhao, P. Xu, F. Fan, J. Yu, Y. Shang, Y. Li, L. Huang, R. Yu "Synthesis and photoluminescence properties of Sm3+ and Dy3+ ions activated double perovskite Sr2MgTeO6 phosphors," Journal of Luminescence, vol. 207, March 2019, Pages 520-525.
[44] M. Xia, S. Gu, C. Zhou, L. Liua, Y. Zhong, Y. Zhang and Z. Zhou, "Enhanced photoluminescence and energy transfer performance of Y 3 Al 4 GaO 12: Mn 4+, Dy 3+ phosphors for plant growth LED lights," RSC Advances, 9.16 (2019): 9244-9252.
[45] X. Y. Sun, Z. He, X. Gu, L. D. Xu and M. F. Shi "Enhancement of Mn4+ Emission by Means of Energy Transfer in Mg2Al4Si5O18:Dy3+, Mn4+ Phosphors," ECS Journal of Solid State Science and Technology, Volume 10, Number 1.
[46] Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, and X. Luo "Flexible fabrication of a patterned red phosphor layer on a YAG:Ce3+ phosphor-in-glass for high-power WLEDs, " Optical Materials Express, Vol. 8, Issue 3, pp. 605-614 (2018)
[47] A. Scacco, P. W. M.Jacobs "Emission spectra of KBr:Sn2+," Journal of Luminescence, Volume 26, Issue 4, April–May 1982, Pages 393-409.
[48] K. Srinivasan and G. Balakrishnan "Kerr effect in KCl:Pb2+ and KCl:Cu+," Journal of Physics C: Solid State Physics, Volume 13, Number 3.
[49] N. Yamashita, Y. Michitsuji and S. Asano "Photoluminescence Spectra and Vibrational Structures of the SrS : Ce3+ and SrSe : Ce3+ Phosphors," Journal of The Electrochemical Society, Volume 134, Number 11.
[50] A. Alkauskas, Q. Yan, and Chris G. Van de Walle "First-principles theory of nonradiative carrier capture via multiphonon emission," Phys. Rev. B, Vol. 90, Iss. 7 , 15 August 2014.
校內:2026-07-23公開