| 研究生: |
許宏杰 Hsu, Hung-Chieh |
|---|---|
| 論文名稱: |
大面積高效率堆疊型鈣鈦礦太陽電池模組之開發 Development of Large-Area High-Efficiency Tandem Perovskite Solar Modules |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 有機鈣鈦礦太陽模組 、雙層鈣鈦礦結構 、刮刀塗佈法 、皮秒雷射 、自組裝分子層 、鈣鈦礦綠能天線 、圖形化電極 、堆疊太陽電池模組 |
| 外文關鍵詞: | organic perovskite solar module, bilayer perovskite structure, doctor blade coating, picosecond laser, self-assembled monolayer, perovskite solar antenna, patterned electrode, tandem solar module |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有機鈣鈦礦太陽電池(PSC)的光電轉換效率(PCE)屢創新高,2025 年已達 27.0%,已相當接近矽晶太陽電池的 27.6%。這一成果顯示 PSC 不僅具備挑戰矽晶技術的潛力,更有望成為新一代具商業化前景的有機半導體太陽電池。然而,PSC 在大面積化發展過程中仍面臨多重瓶頸,尤其是對濕熱、水氧高度敏感,導致其在大氣環境下穩定性欠佳。隨著元件尺寸的增加,效率衰退與介面缺陷問題更趨嚴重。此外,應用端整合不足亦限制了鈣鈦礦技術的市場推進。如何在兼顧高效率的同時,實現長期穩定性與可規模化製作,已成為 PSC 商業化發展的核心課題。為此,本研究提出三大策略:結構工程、介面工程與應用整合,以全面應對各項關鍵技術挑戰,推動有機鈣鈦礦太陽模組從實驗室走向產業化應用。
於論文第4章,針對鈣鈦礦吸收層結構進行改良並引入無毒溶劑γ-丁內酯 (gamma-Butyrolactone,GBL) 至製程中。提出了雙層鈣鈦礦結構用於太陽電池中,開發出類似2D/3D異質結構的雙層鈣鈦礦吸收層。將單陽離子(Single cation)與多陽離子(Multiple cation)鈣鈦礦薄膜進行堆疊,證實以上層單陽離子薄膜可提升元件效率,並強化其在高溫條件下的穩定性。此外,本研究採用刮刀塗佈法(Doctor blade coating)實現大面積薄膜沉積,結合無毒溶劑與可規模化塗佈方式,有助於鈣鈦礦模組的發展。於第 5 章(5-1 與 5-2),聚焦於界面品質提升,採用麥角硫因(L-EGT)與組氨酸(L-His)自組裝分子層作為界面鈍化層。分子羧基與 TiO₂ 表面形成強鍵結,胺基則與鈣鈦礦層鉛離子與有機陽離子作用,降低界面缺陷與非輻射複合。此策略有效提升 25 cm² 大面積模組效率至 17.84%(L-EGT)與 16.5%(L-His),並於 720 小時老化測試後維持初始效率的 91%,展現長期穩定性與商業化潛力。在第 5-3 節的研究中,本研究針對電子傳輸層(Electron Transport Layer, ETL)與鈣鈦礦吸收層的界面進行結構改良,探討不同形式之電子傳輸層對於大面積模組的適配性。界面工程對於大面積元件的載流子提取與傳輸效率具有關鍵影響,同時引入紫外光皮秒雷射切割技術,提升模組元件串聯品質,降低模組內部串聯電阻與短路路徑(Shunting),並有效減少死區(dead area)寬度,該技術不僅能提升鈣鈦礦太陽模組的商業化可行性,也能加速其市場應用,具有極高的產業價值與應用潛力。進入第 6 章的跨域應用探索,本研究將 PSC 與天線整合,開發出 PMMA 封裝的鈣鈦礦綠能天線(PVKSA)與共面波導(CPW)透明天線。PMMA 兼具優異絕緣性與阻隔水氧的封裝特性,同時作為天線介電層,可透過厚度與溶劑系統調控介電常數,優化天線性能。搭配 Pt 奈米層與 CPW 結構,顯著提升天線增益與輻射效率,開發出雙功能集成式綠能天線。最後在第 6-3 節,針對四端點(4T)鈣鈦礦/矽堆疊太陽電池模組應用,提出半穿透模組的圖形化電極策略。透過調控透明導電氧化物(TCO)濺鍍時的氧氣流量,達到電性與透光率的平衡,使模組效率達 13.8%。進一步採用 P2.5 金屬圖形化鍍金設計,降低接觸電阻與金屬遮蔽率,並提高底層矽電池的透光量,最終將模組效率提升至 15.9%,並將 4T 堆疊效率推高至 26.1%,展現堆疊型太陽電池模組推向商業應用的潛能。
In recent years, the power conversion efficiency (PCE) of organic perovskite solar cells (PSCs) has continued to set new records, reaching 27.0% in 2025—approaching the 27.6% benchmark of crystalline silicon solar cells. This achievement highlights PSCs as not only having the potential to rival silicon technology but also as a promising next-generation photovoltaic technology with strong commercialization prospects. However, scaling PSCs to large-area devices remains hindered by their pronounced sensitivity to moisture, heat, and oxygen, which results in poor stability under ambient conditions. As the device size increases, efficiency degradation and interfacial defects become increasingly severe. In addition, insufficient integration into application-oriented systems has further slowed their market adoption. Achieving high efficiency, long-term stability, and scalable manufacturing simultaneously has thus emerged as a core challenge for organic perovskite solar module commercialization. To address these issues, this study proposes three overarching strategies—structural engineering, interfacial engineering, and application integration—targeting the key technological bottlenecks in large-area PSC development.
Chapter 4 focuses on structural optimization of the perovskite absorber layer, incorporating the non-toxic solvent γ-butyrolactone (GBL) into the fabrication process. A bilayer perovskite structure was developed, analogous to a 2D/3D hybrid heterostructure, by stacking a single-cation perovskite top layer over a multi-cation base layer. This architecture was shown to improve device efficiency and enhance thermal stability. Moreover, the doctor blade coating method was employed for scalable large-area film deposition, which, when combined with GBL, provides a viable route toward practical PSC module fabrication. Chapters 5-1 and 5-2 address interfacial quality improvement via self-assembled monolayer of L-ergothioneine (L-EGT) and L-histidine (L-His). These molecules form strong bonds with the TiO₂ surface through their carboxyl groups, while their amino groups interact with lead ions and organic cations in the perovskite lattice, thereby reducing interfacial defects and suppressing nonradiative recombination. This strategy enhanced the efficiencies of large-area (25 cm²) modules to 17.84% (L-EGT) and 16.5% (L-His), retaining 91% of the initial efficiency after 720 h of aging, demonstrating excellent long-term stability and commercial potential. In Chapter 5-3, structural improvements were implemented at the interface between the electron transport layer (ETL) and the perovskite absorber. The compatibility of different ETL configurations for large-area modules was investigated, revealing that interfacial engineering plays a critical role in carrier extraction and transport. Furthermore, ultraviolet picosecond laser scribing (P1, P2, P3) was introduced to enhance module series interconnection quality, reduce series resistance and shunting pathways, and minimize the width of inactive dead areas. This approach not only improves the commercial viability of PSC modules but also accelerates their readiness for market deployment. Chapter 6 explores cross-domain functional integration by combining PSCs with transparent antenna systems. PMMA-encapsulated perovskite solar antennas (PVKSA) and coplanar waveguide (CPW) transparent antennas were developed. PMMA serves as both an encapsulation layer—providing excellent moisture and oxygen barrier properties—and a dielectric substrate whose dielectric constant can be tuned by adjusting its thickness or solvent system. Combined with a Pt nanolayer and optimized CPW architecture, this design significantly improves antenna gain and radiation efficiency, enabling dual-function, integrated green-energy antennas. Finally, in Chapter 6-3, a patterned electrode strategy was introduced for semi-transparent modules designed for four-terminal (4T) perovskite/silicon tandem applications. By optimizing the oxygen flow during transparent conductive oxide (TCO) sputtering, a balance between conductivity and optical transmittance was achieved, resulting in a module efficiency of 13.8%. Subsequent implementation of P2.5 patterned metallization reduced contact resistance and metal shading, improving light transmission to the underlying silicon cell. This strategy increased the module efficiency to 15.9% and raised the 4T tandem efficiency to 26.1%, demonstrating strong potential for commercial deployment of perovskite/silicon tandem solar modules.
[1] "National Renewable Energy Laboratory. NREL Efficiency Chart. Available from: https://nrel.gov/pv/cell–efficiency.html accessed on 8 March 2025."
[2] B. Li, X. Yu, L. Jia, M. Zhang, W. Hu, Y. Shang, X. Li, L. Ding, J. Xu, and S. Yang, "Fast Wetting of a Fullerene Capping Layer Improves the Efficiency and Scalability of Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 12, no. 33, pp. 37265-37274, 2020.
[3] S. Razza, F. Di Giacomo, F. Matteocci, L. Cinà, A. L. Palma, S. Casaluci, P. Cameron, A. D'epifanio, S. Licoccia, and A. Reale, "Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process," Journal of Power Sources, vol. 277, pp. 286-291, 2015.
[4] S. W. Lee, S. Bae, D. Kim, and H. S. Lee, "Historical analysis of high‐efficiency, large‐area solar cells: toward upscaling of perovskite solar cells," Advanced Materials, vol. 32, no. 51, p. 2002202, 2020.
[5] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & environmental science, vol. 9, no. 6, pp. 1989-1997, 2016.
[6] J. Kim, N. Park, J. S. Yun, S. Huang, M. A. Green, and A. W. Ho-Baillie, "An effective method of predicting perovskite solar cell lifetime–Case study on planar CH3NH3PbI3 and HC (NH2) 2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA," Solar Energy Materials and Solar Cells, vol. 162, pp. 41-46, 2017.
[7] L. Yang, K. Wei, Z. Xu, F. Li, R. Chen, X. Zheng, X. Cheng, and T. Jiang, "Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr3 nanocrystal," Optics letters, vol. 43, no. 1, pp. 122-125, 2017.
[8] A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A. L. Abdelhady, and T. Wu, "Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length," ACS Energy Letters, vol. 1, no. 1, pp. 32-37, 2016.
[9] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, and M. K. Nazeeruddin, "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature photonics, vol. 7, no. 6, pp. 486-491, 2013.
[10] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, "Cesium enhances long-term stability of lead bromide perovskite-based solar cells," The journal of physical chemistry letters, vol. 7, no. 1, pp. 167-172, 2016.
[11] M. Kulbak, D. Cahen, and G. Hodes, "How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells," The journal of physical chemistry letters, vol. 6, no. 13, pp. 2452-2456, 2015.
[12] T. J. Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, and A. Hagfeldt, "Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells," Energy & Environmental Science, vol. 9, no. 5, pp. 1706-1724, 2016.
[13] A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W. L. Mao, and H. I. Karunadasa, "High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties," ACS central science, vol. 2, no. 4, pp. 201-209, 2016.
[14] N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, and Y. Zhang, "Stability of all-inorganic perovskite solar cells," Nano energy, vol. 67, p. 104249, 2020.
[15] C. C. Boyd, R. Cheacharoen, T. Leijtens, and M. D. McGehee, "Understanding degradation mechanisms and improving stability of perovskite photovoltaics," Chemical reviews, vol. 119, no. 5, pp. 3418-3451, 2018.
[16] Z. Xu, R. Chen, Y. Wu, R. He, J. Yin, W. Lin, B. Wu, J. Li, and N. Zheng, "Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules," Journal of Materials Chemistry A, vol. 7, no. 47, pp. 26849-26857, 2019.
[17] M. Younas, M. A. Gondal, and M. A. Dastageer, "Fabrication of perovskite solar cells using novel 2D/3D‐blended perovskite single crystals," International Journal of Energy Research, vol. 45, no. 4, pp. 5555-5566, 2021.
[18] T. H. Kim and S. G. Kim, "Clinical outcomes of occupational exposure to n, n-dimethylformamide: perspectives from experimental toxicology," Safety and health at work, vol. 2, no. 2, pp. 97-104, 2011.
[19] K. L. Gardner, J. G. Tait, T. Merckx, W. Qiu, U. W. Paetzold, L. Kootstra, M. Jaysankar, R. Gehlhaar, D. Cheyns, and P. Heremans, "Nonhazardous solvent systems for processing perovskite photovoltaics," Advanced Energy Materials, vol. 6, no. 14, p. 1600386, 2016.
[20] H.-C. Hsu, S.-H. Wu, Y.-L. Tung, and C.-F. Shih, "Long-term stable perovskite solar cells prepared by doctor blade coating technology using bilayer structure and non-toxic solvent," Organic Electronics, vol. 101, p. 106400, 2022.
[21] H.-C. Hsu, S.-T. Hong, S.-H. Wu, and C.-F. Shih, "A poly (methyl methacrylate)-encapsulated perovskite solar antenna with a long lifespan," Organic Electronics, vol. 114, p. 106748, 2023.
[22] J. Howell, "Microstrip antennas," IEEE Transactions on Antennas and Propagation, vol. 23, no. 1, pp. 90-93, 1975.
[23] S. Shynu, M. J. R. Ons, M. J. Ammann, S. McCormack, and B. Norton, "Dual band a-Si: H solar-slot antenna for 2.4/5.2 GHz WLAN applications," in 2009 3rd European Conference on Antennas and Propagation, 2009: IEEE, pp. 408-410.
[24] T. Yasin and R. Baktur, "Circularly polarized meshed patch antenna for small satellite application," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1057-1060, 2013.
[25] M. T. Islam, M. Cho, M. Samsuzzaman, and S. Kibria, "Compact antenna for small satellite applications [Antenna Applications Corner]," IEEE Antennas and Propagation magazine, vol. 57, no. 2, pp. 30-36, 2015.
[26] S. K. Patel and Y. Kosta, "E-shape microstrip patch antenna design for GPS application," in 2011 Nirma University International Conference on Engineering, 2011: IEEE, pp. 1-4.
[27] H.-M. Chen, Y.-K. Wang, Y.-F. Lin, C.-Y. Lin, and S.-C. Pan, "Microstrip-fed circularly polarized square-ring patch antenna for GPS applications," IEEE Transactions on Antennas and Propagation, vol. 57, no. 4, pp. 1264-1267, 2009.
[28] D. Massa, "A dual frequency microstrip patch antenna for high-precision GPS applications," IEEE Antennas and Wireless Propagation Letters, vol. 3, pp. 157-160, 2004.
[29] J. Liang, L. Guo, C. Chiau, X. Chen, and C. Parini, "Study of CPW-fed circular disc monopole antenna for ultra wideband applications," IEE Proceedings-Microwaves, Antennas and Propagation, vol. 152, no. 6, pp. 520-526, 2005.
[30] X. Huo, Y. Li, W. Liu, X. Huang, J. Meng, Y. Lu, N. Meng, Y. Zhang, S. Zhao, and B. Qiao, "Nonpolar and ultra-long-chain ligand to modify the perovskite Interface toward high-efficiency and stable wide bandgap perovskite solar cells," ACS Applied Energy Materials, vol. 6, no. 3, pp. 1731-1740, 2023.
[31] P. Da and G. Zheng, "Tailoring interface of lead-halide perovskite solar cells," Nano Research, vol. 10, pp. 1471-1497, 2017.
[32] P. Roy, A. Ghosh, F. Barclay, A. Khare, and E. Cuce, "Perovskite solar cells: A review of the recent advances," Coatings, vol. 12, no. 8, p. 1089, 2022.
[33] E. A. R. Assirey, "Perovskite synthesis, properties and their related biochemical and industrial application," Saudi Pharmaceutical Journal, vol. 27, no. 6, pp. 817-829, 2019.
[34] G. Schileo and G. Grancini, "Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells," Journal of materials chemistry C, vol. 9, no. 1, pp. 67-76, 2021.
[35] C. Yang, W. Hu, J. Liu, C. Han, Q. Gao, A. Mei, Y. Zhou, F. Guo, and H. Han, "Achievements, challenges, and future prospects for industrialization of perovskite solar cells," Light: Science & Applications, vol. 13, no. 1, p. 227, 2024.
[36] R. Lin, Y. Wang, Q. Lu, B. Tang, J. Li, H. Gao, Y. Gao, H. Li, C. Ding, and J. Wen, "All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction," Nature, vol. 620, no. 7976, pp. 994-1000, 2023.
[37] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, "Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers," Energy & Environmental Science, vol. 8, no. 5, pp. 1544-1550, 2015.
[38] N.-G. Park and K. Zhu, "Scalable fabrication and coating methods for perovskite solar cells and solar modules," Nature Reviews Materials, vol. 5, no. 5, pp. 333-350, 2020.
[39] X. Ding, J. Liu, and T. A. Harris, "A review of the operating limits in slot die coating processes," AIChE Journal, vol. 62, no. 7, pp. 2508-2524, 2016.
[40] J. Li, J. Dagar, O. Shargaieva, M. A. Flatken, H. Köbler, M. Fenske, C. Schultz, B. Stegemann, J. Just, and D. M. Többens, "20.8% slot‐die coated MAPbI3 perovskite solar cells by optimal DMSO‐content and age of 2‐ME based precursor inks," Advanced Energy Materials, vol. 11, no. 10, p. 2003460, 2021.
[41] S. H. Huang, C. K. Guan, P. H. Lee, H. C. Huang, C. F. Li, Y. C. Huang, and W. F. Su, "Perovskite Solar Cells: Toward All Slot‐Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air (Adv. Energy Mater. 37/2020)," Advanced Energy Materials, vol. 10, no. 37, p. 2070155, 2020.
[42] D. Vak, K. Hwang, A. Faulks, Y. S. Jung, N. Clark, D. Y. Kim, G. J. Wilson, and S. E. Watkins, "3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells," Advanced Energy Materials, vol. 5, no. 4, 2015.
[43] M. Fievez, P. J. S. Rana, T. M. Koh, M. Manceau, J. H. Lew, N. F. Jamaludin, B. Ghosh, A. Bruno, S. Cros, and S. Berson, "Slot-die coated methylammonium-free perovskite solar cells with 18% efficiency," Solar Energy Materials and Solar Cells, vol. 230, p. 111189, 2021.
[44] I. Zimmermann, M. Al Atem, O. Fournier, S. Bernard, S. Jutteau, L. Lombez, and J. Rousset, "Sequentially slot‐die‐coated perovskite for efficient and scalable solar cells," Advanced Materials Interfaces, vol. 8, no. 18, p. 2100743, 2021.
[45] B. Dou, J. B. Whitaker, K. Bruening, D. T. Moore, L. M. Wheeler, J. Ryter, N. J. Breslin, J. J. Berry, S. M. Garner, and F. S. Barnes, "Roll-to-roll printing of perovskite solar cells," ACS Energy Letters, vol. 3, no. 10, pp. 2558-2565, 2018.
[46] D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows, and D. G. Lidzey, "Spray‐cast multilayer organometal perovskite solar cells fabricated in air," Advanced Energy Materials, vol. 6, no. 22, p. 1600994, 2016.
[47] S. C. Hong, G. Lee, K. Ha, J. Yoon, N. Ahn, W. Cho, M. Park, and M. Choi, "Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system," ACS applied materials & interfaces, vol. 9, no. 9, pp. 7879-7884, 2017.
[48] J. H. Heo, M. H. Lee, M. H. Jang, and S. H. Im, "Highly efficient CH 3 NH 3 PbI 3− x Cl x mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating," Journal of Materials Chemistry A, vol. 4, no. 45, pp. 17636-17642, 2016.
[49] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, "2D homologous perovskites as light-absorbing materials for solar cell applications," Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843-7850, 2015.
[50] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M. D. McGehee, and H. I. Karunadasa, "A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability," Angewandte Chemie International Edition, vol. 53, no. 42, pp. 11232-11235, 2014.
[51] Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng, S. Tang, Y. Liu, J. Zhao, and J. Huang, "Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures," The journal of physical chemistry letters, vol. 9, no. 3, pp. 654-658, 2018.
[52] S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, and Y. Gao, "Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts," Science, vol. 365, no. 6452, pp. 473-478, 2019.
[53] S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao, and J. Huang, "Stabilizing perovskite-substrate interfaces for high-performance perovskite modules," Science, vol. 373, no. 6557, pp. 902-907, 2021.
[54] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, and M. Kim, "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, vol. 592, no. 7854, pp. 381-385, 2021.
[55] Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. Oliver, and J. Lim, "A piperidinium salt stabilizes efficient metal-halide perovskite solar cells," Science, vol. 369, no. 6499, pp. 96-102, 2020.
[56] D. W. deQuilettes, J. J. Yoo, R. Brenes, F. U. Kosasih, M. Laitz, B. D. Dou, D. J. Graham, K. Ho, Y. Shi, and S. S. Shin, "Reduced recombination via tunable surface fields in perovskite thin films," Nature Energy, vol. 9, no. 4, pp. 457-466, 2024.
[57] A. H. Proppe, A. Johnston, S. Teale, A. Mahata, R. Quintero-Bermudez, E. H. Jung, L. Grater, T. Cui, T. Filleter, and C.-Y. Kim, "Multication perovskite 2D/3D interfaces form via progressive dimensional reduction," Nature communications, vol. 12, no. 1, p. 3472, 2021.
[58] G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye, and Q. Liang, "Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation," Nature Photonics, vol. 15, no. 9, pp. 681-689, 2021.
[59] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, and J. Seo, "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)," Nature, vol. 567, no. 7749, pp. 511-515, 2019.
[60] Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, and J. H. Noh, "Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth," Nature Energy, vol. 6, no. 1, pp. 63-71, 2021.
[61] A. Krishna, S. Gottis, M. K. Nazeeruddin, and F. Sauvage, "Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells?," Advanced Functional Materials, vol. 29, no. 8, p. 1806482, 2019.
[62] H.-C. Hsu, J.-C. Tsao, C.-H. Yeh, H.-T. Wu, C.-T. Wu, S.-H. Wu, and C.-F. Shih, "Large-area perovskite solar module produced by introducing self-assembled L-histidine monolayer at TiO2 and perovskite interface," Nanomaterials, vol. 14, no. 15, p. 1315, 2024.
[63] Y. Shih, L. Wang, H. Hsieh, and K. Lin, "Enhancing the photocurrent of perovskite solar cells via modification of the TiO 2/CH 3 NH 3 PbI 3 heterojunction interface with amino acid," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 9133-9136, 2015.
[64] C.-T. Lin, W. Xu, T. J. Macdonald, J. Ngiam, J.-H. Kim, T. Du, S. Xu, P. S. Tuladhar, H. Kang, and K. Lee, "Correlating the active layer structure and composition with the device performance and lifetime of amino-acid-modified perovskite solar cells," ACS applied materials & interfaces, vol. 13, no. 36, pp. 43505-43515, 2021.
[65] J. Du, L. Feng, X. Guo, X. Huang, Z. Lin, J. Su, Z. Hu, J. Zhang, J. Chang, and Y. Hao, "Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/perovskite interface," Journal of Power Sources, vol. 455, p. 227974, 2020.
[66] B. Chen, P. N. Rudd, S. Yang, Y. Yuan, and J. Huang, "Imperfections and their passivation in halide perovskite solar cells," Chemical Society Reviews, vol. 48, no. 14, pp. 3842-3867, 2019.
[67] G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan, and G. Fang, "Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement," Journal of Materials Chemistry A, vol. 5, no. 4, pp. 1658-1666, 2017.
[68] F. Han, G. Hao, Z. Wan, J. Luo, J. Xia, and C. Jia, "Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells," Electrochimica Acta, vol. 296, pp. 75-81, 2019.
[69] S.-J. Moon, J.-H. Yum, L. Loefgren, A. Walter, L. Sansonnens, M. Benkhaira, S. Nicolay, J. Bailat, and C. Ballif, "Laser-scribing patterning for the production of organometallic halide perovskite solar modules," IEEE J. Photovolt., vol. 5, no. 4, pp. 1087-1092, 2015.
[70] H.-C. Hsu, S.-H. Wu, and C.-F. Shih, "Enhanced photovoltaic performance and longevity of perovskite modules via interface engineering of transport layer," Japanese Journal of Applied Physics, vol. 63, no. 12, p. 12SP20, 2024.
[71] Z. Zhang, Z. Li, L. Meng, S. Y. Lien, and P. Gao, "Perovskite‐Based tandem solar cells: get the most out of the sun," Advanced Functional Materials, vol. 30, no. 38, p. 2001904, 2020.
[72] V. Kapustianyk, Y. Shchur, I. Kityk, V. Rudyk, G. Lach, L. Laskowski, S. Tkaczyk, J. Swiatek, and V. Davydov, "Resonance dielectric dispersion of TEA-CoCl2Br2nanocrystals incorporated into the PMMA matrix," Journal of Physics: Condensed Matter, vol. 20, no. 36, 2008, doi: 10.1088/0953-8984/20/36/365215.
[73] H. Abdulsalam, G. Babaji, and H. T. Abba, "The Effect of Temperature and Active layer thickness on the Performance of CH3NH3PbI3 Perovskite Solar Cell: A Numerical Simulation Approach," Journal for Foundations and Applications of Physics, vol. 5, no. 2, pp. 141-151, 2018.
[74] B. Zhang, M.-J. Zhang, S.-P. Pang, C.-S. Huang, Z.-M. Zhou, D. Wang, N. Wang, and G.-L. Cui, "Carrier Transport in CH3NH3PbI3Films with Different Thickness for Perovskite Solar Cells," Advanced Materials Interfaces, vol. 3, no. 17, 2016, doi: 10.1002/admi.201600327.
[75] B. Shi, X. Yao, F. Hou, S. Guo, Y. Li, C. Wei, Y. Ding, Y. Li, Y. Zhao, and X. Zhang, "Unraveling the Passivation Process of PbI2 to Enhance the Efficiency of Planar Perovskite Solar Cells," The Journal of Physical Chemistry C, vol. 122, no. 37, pp. 21269-21276, 2018, doi: 10.1021/acs.jpcc.8b08075.
[76] B.-X. Chen, W.-G. Li, H.-S. Rao, Y.-F. Xu, D.-B. Kuang, and C.-Y. Su, "Large-grained perovskite films via FA x MA 1−x Pb(I x Br 1−x ) 3 single crystal precursor for efficient solar cells," Nano Energy, vol. 34, pp. 264-270, 2017, doi: 10.1016/j.nanoen.2017.02.034.
[77] Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, and H. J. Snaith, "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites," Nature Energy, vol. 2, no. 9, 2017, doi: 10.1038/nenergy.2017.135.
[78] T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, and L. Han, "Efficient and Stable CsPbI3 Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups," Advanced Materials, vol. 31, no. 24, p. e1900605, Jun 2019, doi: 10.1002/adma.201900605.
[79] M. Mateen, Z. Arain, X. Liu, A. Iqbal, Y. Ren, X. Zhang, C. Liu, Q. Chen, S. Ma, Y. Ding, M. Cai, and S. Dai, "Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering," Science China Materials, vol. 63, no. 12, pp. 2477-2486, 2020, doi: 10.1007/s40843-020-1383-3.
[80] A. Uddin, M. Upama, H. Yi, and L. Duan, "Encapsulation of Organic and Perovskite Solar Cells: A Review," Coatings, vol. 9, no. 2, 2019, doi: 10.3390/coatings9020065.
[81] F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, and C. Gerbaldi, "Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers," Science, vol. 354, no. 6309, pp. 203-206, 2016.
[82] B. Chaudhary, A. Kulkarni, A. K. Jena, M. Ikegami, Y. Udagawa, H. Kunugita, K. Ema, and T. Miyasaka, "Poly (4‐Vinylpyridine)‐Based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells," ChemSusChem, vol. 10, no. 11, pp. 2473-2479, 2017.
[83] Y. Yang, J. Luo, N. Luo, A. Wei, J. Liu, Y. Zhao, and Z. Xiao, "Effect of Cs+ Fraction on Photovoltaic Performance of Perovskite Solar Cells Based on CsxMA1−xPbI3 Absorption Layers," Journal of Electronic Materials, vol. 49, no. 12, pp. 7044-7053, 2020, doi: 10.1007/s11664-020-08484-1.
[84] X. Wang, Y. Chen, T. Zhang, X. Wang, Y. Wang, M. Kan, Y. Miao, H. Chen, X. Liu, and X. Wang, "Stable Cesium-Rich Formamidinium/Cesium Pure-Iodide Perovskites for Efficient Photovoltaics," ACS Energy Letters, vol. 6, no. 8, pp. 2735-2741, 2021.
[85] U. K. Aryal, V. M. Arivunithi, S. S. Reddy, J. Kim, Y.-S. Gal, and S.-H. Jin, "Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells," Organic Electronics, vol. 63, pp. 222-230, 2018, doi: 10.1016/j.orgel.2018.09.034.
[86] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, "Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells," Advanced Materials, vol. 23, no. 40, pp. 4636-43, Oct 25 2011, doi: 10.1002/adma.201103006.
[87] X.-X. Ma and Z.-S. Li, "Substituting Cs for MA on the surface of MAPbI3 perovskite: A first-principles study," Computational Materials Science, vol. 150, pp. 411-417, 2018.
[88] V. M. Arivunithi, H.-Y. Park, S. S. Reddy, J. Kim, H. D. Yoo, S.-H. Jin, and J.-S. Moon, "A simple engineering strategy with side chain liquid crystal polymers in perovskite absorbers for high efficiency and stability," Organic Electronics, vol. 88, 2021, doi: 10.1016/j.orgel.2020.105987.
[89] S. Castro-Hermosa, L. Wouk, I. S. Bicalho, L. de Queiroz Corrêa, B. de Jong, L. Cinà, T. M. Brown, and D. Bagnis, "Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer," Nano Research, vol. 14, no. 4, pp. 1034-1042, 2020, doi: 10.1007/s12274-020-3147-4.
[90] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, "Anomalous hysteresis in perovskite solar cells," The journal of physical chemistry letters, vol. 5, no. 9, pp. 1511-1515, 2014.
[91] M. Hou, H. Zhang, Z. Wang, Y. Xia, Y. Chen, and W. Huang, "Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer," ACS applied materials & interfaces, vol. 10, no. 36, pp. 30607-30613, 2018.
[92] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, "Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells," Nature communications, vol. 5, no. 1, p. 5784, 2014.
[93] C. Sun, Z. Wu, H. L. Yip, H. Zhang, X. F. Jiang, Q. Xue, Z. Hu, Z. Hu, Y. Shen, and M. Wang, "Amino‐functionalized conjugated polymer as an efficient electron transport layer for high‐performance planar‐heterojunction perovskite solar cells," Advanced Energy Materials, vol. 6, no. 5, p. 1501534, 2016.
[94] C.-Y. Chang, C.-P. Wang, R. Raja, L. Wang, C.-S. Tsao, and W.-F. Su, "High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism," Journal of Materials Chemistry A, vol. 6, no. 9, pp. 4179-4188, 2018.
[95] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, vol. 342, no. 6156, pp. 344-347, 2013.
[96] P. E. Shaw, A. Ruseckas, and I. D. Samuel, "Exciton diffusion measurements in poly (3‐hexylthiophene)," Advanced Materials, vol. 20, no. 18, pp. 3516-3520, 2008.
[97] B. Bharti, S. Kumar, and R. Kumar, "Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds," Applied Surface Science, vol. 364, pp. 51-60, 2016.
[98] Y. Zhang, Q. Wang, K. Duan, L. Wang, L. Tao, J. Zhang, H. Wang, and Z. Huo, "The effects of pyridine molecules structure on the defects passivation of perovskite solar cells," Journal of Solid State Electrochemistry, vol. 25, pp. 1531-1540, 2021.
[99] M. Li, L. Yu, Y. Zhang, H. Gao, P. Li, R. Chen, and W. Huang, "Multiple passivation of electronic defects for efficient and stable perovskite solar cells," Solar Rrl, vol. 4, no. 11, p. 2000481, 2020.
[100] C. Di Valentin, G. Pacchioni, and A. Selloni, "Reduced and n-type doped TiO2: nature of Ti3+ species," The Journal of Physical Chemistry C, vol. 113, no. 48, pp. 20543-20552, 2009.
[101] E. Finazzi, C. Di Valentin, G. Pacchioni, and A. Selloni, "Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+ U, and hybrid DFT calculations," The Journal of chemical physics, vol. 129, no. 15, 2008.
[102] A. Komolov, E. Lazneva, N. Gerasimova, Y. A. Panina, V. Sobolev, A. Koroleva, S. Pshenichnyuk, N. Asfandiarov, A. Modelli, and B. Handke, "Conduction band electronic states of ultrathin layers of thiophene/phenylene co-oligomers on an oxidized silicon surface," Journal of Electron Spectroscopy and Related Phenomena, vol. 235, pp. 40-45, 2019.
[103] I. A. Pronin, I. A. Averin, A. A. Karmanov, N. D. Yakushova, A. S. Komolov, E. F. Lazneva, M. M. Sychev, V. A. Moshnikov, and G. Korotcenkov, "Control over the surface properties of zinc oxide powders via combining mechanical, electron beam, and thermal processing," Nanomaterials, vol. 12, no. 11, p. 1924, 2022.
[104] M. Más-Montoya, D. Curiel, J. Wang, B. J. Bruijnaers, and R. A. Janssen, "Use of Sodium Diethyldithiocarbamate to Enhance the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells," Solar RRL, vol. 5, no. 4, p. 2000811, 2021.
[105] K. G. Godinho, A. Walsh, and G. W. Watson, "Energetic and electronic structure analysis of intrinsic defects in SnO2," The Journal of Physical Chemistry C, vol. 113, no. 1, pp. 439-448, 2009.
[106] D. S. Mann, P. Patil, S.-N. Kwon, and S.-I. Na, "Enhanced performance of pin perovskite solar cell via defect passivation of nickel oxide/perovskite interface with self-assembled monolayer," Applied Surface Science, vol. 560, p. 149973, 2021.
[107] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, and J. Bisquert, "Mechanism of carrier accumulation in perovskite thin-absorber solar cells," Nature communications, vol. 4, no. 1, p. 2242, 2013.
[108] M. K. Mohammed, A. K. Al-Mousoi, S. Singh, A. Kumar, M. K. Hossain, S. Q. Salih, P. Sasikumar, R. Pandey, A. A. Yadav, and Z. M. Yaseen, "Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer," Optical Materials, vol. 138, p. 113702, 2023.
[109] W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, and Z. Yang, "Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells," Nature communications, vol. 9, no. 1, pp. 1-8, 2018.
[110] Z. Qi, J. Li, X. Zhang, J. Dou, Q. Guo, Y. Zhao, P. Yang, Q. Tang, and J. Duan, "Healing the Buried Interface by a Plant-Derived Green Passivator for Carbon-Based CsPbIBr2 Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 16, no. 12, pp. 14974-14983, 2024.
[111] H. Kouki, S. Pitié, A. Torkhani, F. Mamèche, P. Decorse, M. Seydou, F. Kouki, and P. Lang, "Tailor-Made Amino-Based Self-Assembled Monolayers Grafted on Electron Transport ZnO Layers: Perovskite Solar Cell Performance and Modified Interface Relationship," ACS Applied Energy Materials, vol. 5, no. 2, pp. 1635-1645, 2022.
[112] C. Di Valentin, G. Pacchioni, and A. Selloni, "Electronic structure of defect states in hydroxylated and reduced rutile TiO 2 (110) surfaces," Physical review letters, vol. 97, no. 16, p. 166803, 2006.
[113] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, "Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells," Nature communications, vol. 6, no. 1, p. 7747, 2015.
[114] W. Wu, X. Dong, G. Liu, X. Pan, and H. Zheng, "Regulating coordination by multi-configurational alkaloid-based passivation molecules for high-performance perovskite photovoltaics," Chemical Engineering Journal, vol. 452, p. 139535, 2023.
[115] L. Xie, J. Chen, P. Vashishtha, X. Zhao, G. S. Shin, S. G. Mhaisalkar, and N.-G. Park, "Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells," ACS Energy Letters, vol. 4, no. 9, pp. 2192-2200, 2019.
[116] T. Zhu, J. Su, F. Labat, I. Ciofini, and T. Pauporte, "Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells," ACS Applied Materials & Interfaces, vol. 12, no. 1, pp. 744-752, 2019.
[117] Z. Jiang, J. Fu, J. Zhang, Q. Chen, Z. Zhang, W. Ji, A. Wang, T. Zhang, Y. Zhou, and B. Song, "Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells," Chemical Engineering Journal, vol. 436, p. 135269, 2022.
[118] L. Wen, Y. Rao, M. Zhu, R. Li, J. Zhan, L. Zhang, L. Wang, M. Li, S. Pang, and Z. Zhou, "Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by π‐Pb2+ Interactions," Angewandte Chemie International Edition, vol. 60, no. 32, pp. 17356-17361, 2021.
[119] R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, and Z.-K. Wang, "Caffeine improves the performance and thermal stability of perovskite solar cells," Joule, vol. 3, no. 6, pp. 1464-1477, 2019.
[120] Y. Guan, C. Zhang, Z. Liu, Y. Zhao, A. Ren, J. Liang, F. Hu, and Y. S. Zhao, "Single‐Crystalline Perovskite p–n Junction Nanowire Arrays for Ultrasensitive Photodetection," Advanced Materials, vol. 34, no. 35, p. 2203201, 2022.
[121] M. A. Henderson, W. S. Epling, C. H. Peden, and C. L. Perkins, "Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110)," The Journal of Physical Chemistry B, vol. 107, no. 2, pp. 534-545, 2003.
[122] R. L. Kurtz, R. Stock-Bauer, T. E. Msdey, E. Román, and J. De Segovia, "Synchrotron radiation studies of H2O adsorption on TiO2 (110)," Surface Science, vol. 218, no. 1, pp. 178-200, 1989.
[123] T. Bredow, E. Apra, M. Catti, and G. Pacchioni, "Cluster and periodic ab-initio calculations on K/TiO2 (110)," Surface science, vol. 418, no. 1, pp. 150-165, 1998.
[124] S. Tian, G. Li, R. C. Turnell‐Ritson, Z. Fei, A. Bornet, M. K. Nazeeruddin, and P. J. Dyson, "Controlling Tin Halide Perovskite Oxidation Dynamics in Solution for Perovskite Optoelectronic Devices," Angewandte Chemie International Edition, vol. 63, no. 32, p. e202407193, 2024.
[125] D. Heo, W. Jang, and S. Kim, "Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency," Materials Today Chemistry, vol. 26, p. 101224, 2022.
[126] A. Rapsomanikis, D. Karageorgopoulos, P. Lianos, and E. Stathatos, "High performance perovskite solar cells with functional highly porous TiO2 thin films constructed in ambient air," Solar Energy Materials and Solar Cells, vol. 151, pp. 36-43, 2016.
[127] L.-L. Jiang, S. Cong, Y.-H. Lou, Q.-H. Yi, J.-T. Zhu, H. Ma, and G.-F. Zou, "Interface engineering toward enhanced efficiency of planar perovskite solar cells," Journal of Materials Chemistry A, vol. 4, no. 1, pp. 217-222, 2016.
[128] Y.-W. Hsiao, J.-Y. Song, H.-T. Wu, K.-T. Hong, C.-C. Leu, and C.-F. Shih, "Effects of cesium content on the triple-cation lead halide perovskite photodetectors with enhanced detectivity and response time," Journal of Alloys and Compounds, vol. 889, p. 161621, 2021.
[129] G. J. A. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, and H. J. Bolink, "Trap‐assisted non‐radiative recombination in organic–inorganic perovskite solar cells," Advanced Materials, vol. 27, no. 11, pp. 1837-1841, 2015.
[130] Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, and H. Bian, "Multifunctional enhancement for highly stable and efficient perovskite solar cells," Advanced Functional Materials, vol. 31, no. 7, p. 2005776, 2021.
[131] B. Parida, A. Singh, M. Oh, M. Jeon, J.-W. Kang, and H. Kim, "Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells," Materials Today Communications, vol. 18, pp. 176-183, 2019.
[132] J. Yin, J. Cao, X. He, S. Yuan, S. Sun, J. Li, N. Zheng, and L. Lin, "Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer," Journal of Materials Chemistry A, vol. 3, no. 32, pp. 16860-16866, 2015.
[133] G. Heise, A. Börner, M. Dickmann, M. Englmaier, A. Heiss, M. Kemnitzer, J. Konrad, R. Moser, J. Palm, and H. Vogt, "Demonstration of the monolithic interconnection on CIS solar cells by picosecond laser structuring on 30 by 30 cm2 modules," Progress in Photovoltaics: Research and Applications, vol. 23, no. 10, pp. 1291-1304, 2015.
[134] D. Ruthe, K. Zimmer, and T. Höche, "Etching of CuInSe2 thin films—comparison of femtosecond and picosecond laser ablation," Applied surface science, vol. 247, no. 1-4, pp. 447-452, 2005.
[135] H. P. Huber, F. Herrnberger, S. Kery, and S. Zoppel, "Selective structuring of thin-film solar cells by ultrafast laser ablation," in Commercial and Biomedical Applications of Ultrafast Lasers VIII, 2008, vol. 6881: International Society for Optics and Photonics, p. 688117.
[136] Z. Hameiri, A. Mahboubi Soufiani, M. K. Juhl, L. Jiang, F. Huang, Y. B. Cheng, H. Kampwerth, J. W. Weber, M. A. Green, and T. Trupke, "Photoluminescence and electroluminescence imaging of perovskite solar cells," Progress in photovoltaics: research and applications, vol. 23, no. 12, pp. 1697-1705, 2015.
[137] Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. Van Hest, and K. Zhu, "Scalable fabrication of perovskite solar cells," Nature Reviews Materials, vol. 3, no. 4, pp. 1-20, 2018.
[138] O. O'Conchubhair, P. McEvoy, and M. J. Ammann, "Integration of antenna array with multicrystalline silicon solar cell," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1231-1234, Feb. 2015, doi: 10.1109/LAWP.2015.2399652.
[139] O. O'Conchubhair, P. McEvoy, and M. J. Ammann, "Dye-sensitized solar cell antenna," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 352-355, 2016.
[140] M. Kirschning and R. H. Jansen, "Accurate model for effective dielectric constant of microstrip with validity up to millimetre-wave frequencies," Electronics letters, vol. 6, no. 18, pp. 272-273, Mar. 1982, doi: 10.1049/el:19820186.
[141] A. Atli and A. Yildiz, "Opaque Pt counter electrodes for dye‐sensitized solar cells," International Journal of Energy Research, vol. 46, no. 5, pp. 6543-6552, 2022.
[142] N. Papageorgiou, "Counter-electrode function in nanocrystalline photoelectrochemical cell configurations," Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1421-1446, 2004.
[143] M. Y. Song, K. N. Chaudhari, J. Park, D.-S. Yang, J. H. Kim, M.-S. Kim, K. Lim, J. Ko, and J.-S. Yu, "High efficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solar cell," Applied energy, vol. 100, pp. 132-137, 2012.
[144] A. Pokaipisit, M. Horprathum, and P. Limsuwan, "Influence of oxygen flow rate on properties of indium tin oxide thin films prepared by ion-assisted electron beam evaporation."
[145] A. Chen, K. Zhu, H. Zhong, Q. Shao, and G. Ge, "A new investigation of oxygen flow influence on ITO thin films by magnetron sputtering," Solar energy materials and solar cells, vol. 120, pp. 157-162, 2014.
[146] S. Li, X. Qiao, and J. Chen, "Effects of oxygen flow on the properties of indium tin oxide films," Materials Chemistry and Physics, vol. 98, no. 1, pp. 144-147, 2006.
[147] Q. Xu, Y. Zhao, and X. Zhang, "Light management in monolithic perovskite/silicon tandem solar cells," Solar RRL, vol. 4, no. 2, p. 1900206, 2020.
[148] K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Hoye, C. D. Bailie, and T. Leijtens, "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, vol. 2, no. 4, pp. 1-7, 2017.
[149] E. Han, J.-H. Yun, I. Maeng, T. Qiu, Y. Zhang, E. Choi, S.-M. Lee, P. Chen, M. Hao, and Y. Yang, "Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy," Nano Energy, vol. 131, p. 110136, 2024.
[150] M.-C. Chen and S.-A. Chen, "Influence of oxygen deficiency in indium tin oxide on the performance of polymer light-emitting diodes," Thin Solid Films, vol. 517, no. 8, pp. 2708-2711, 2009.
[151] S. Chen, F. Meng, J. Shi, Z. Yan, Y. Liu, and Z. Liu, "High-performance multiple-doped In2O3 transparent conductive oxide films in near-infrared light region," Journal of Applied Physics, vol. 132, no. 13, 2022.
[152] T. C.-J. Yang, P. Fiala, Q. Jeangros, and C. Ballif, "High-bandgap perovskite materials for multijunction solar cells," Joule, vol. 2, no. 8, pp. 1421-1436, 2018.
[153] E. Millon, M. Nistor, C. Hebert, Y. Davila, and J. Perriere, "Phase separation in nanocomposite indium tin oxide thin films grown at room temperature: on the role of oxygen deficiency," Journal of Materials Chemistry, vol. 22, no. 24, pp. 12179-12185, 2012.
[154] J.-H. Yoon, J.-K. Park, W. M. Kim, J. Lee, H. Pak, and J.-h. Jeong, "Characterization of efficiency-limiting resistance losses in monolithically integrated Cu (In, Ga) Se2 solar modules," Scientific reports, vol. 5, no. 1, p. 7690, 2015.
[155] Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, and X. Xu, "27%‐Efficiency four‐terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh," Advanced Functional Materials, vol. 30, no. 4, p. 1908298, 2020.
[156] Q. Wen, C. Duan, F. Zou, D. Luo, J. Li, Z. Liu, J. Wang, and K. Yan, "All-inorganic CsPb1-xSnxI2Br perovskites mediated by dicyandiamide additive for efficient 4-terminal tandem solar cell," Chemical Engineering Journal, vol. 452, p. 139697, 2023.
[157] D. Chen, F. Yang, M. Yang, W. Chai, W. Zhu, C. Zhang, Y. Zhao, and Y. Li, "A Stepwise Solvent-Annealing Strategy for High-Efficiency Four-Terminal Perovskite/Cu (InGa) Se2 Tandem Solar Cells," Materials Today Energy, p. 101816, 2025.
[158] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. Morales Vilches, E. Kasparavicius, and J. A. Smith, "Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction," Science, vol. 370, no. 6522, pp. 1300-1309, 2020.
[159] J. Liu, M. De Bastiani, E. Aydin, G. T. Harrison, Y. Gao, R. R. Pradhan, M. K. Eswaran, M. Mandal, W. Yan, and A. Seitkhan, "Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF x," Science, vol. 377, no. 6603, pp. 302-306, 2022.
[160] J. Tao, X. Liu, J. Shen, S. Han, L. Guan, G. Fu, D.-B. Kuang, and S. Yang, "F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar Cells with Fill Factor Exceeding 84%," ACS nano, vol. 16, no. 7, pp. 10798-10810, 2022.
[161] X. Lian, Y. Xu, W. Fu, R. Meng, Q. Ma, C. Xu, M. Luo, Y. Hu, J. Han, and H. Min, "Homogenizing Morphology and Composition of Methylammonium‐Free Wide‐Bandgap Perovskite for Efficient and Stable Tandem Solar Cells," Advanced Functional Materials, vol. 34, no. 37, p. 2402061, 2024.
[162] S. Gharibzadeh, I. M. Hossain, P. Fassl, B. A. Nejand, T. Abzieher, M. Schultes, E. Ahlswede, P. Jackson, M. Powalla, and S. Schäfer, "2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four‐terminal tandems with silicon and CIGS," Advanced Functional Materials, vol. 30, no. 19, p. 1909919, 2020.
[163] H. A. Dewi, H. Wang, J. Li, M. Thway, R. Sridharan, R. Stangl, F. Lin, A. G. Aberle, N. Mathews, and A. Bruno, "Highly efficient semitransparent perovskite solar cells for four terminal perovskite-silicon tandems," ACS applied materials & interfaces, vol. 11, no. 37, pp. 34178-34187, 2019.
[164] S. Moeini, M. Noori, and A. Abbasiyan, "Efficiency enhancement in 4T perovskite/Si tandem solar cell by charge extraction management," Solar Energy Materials and Solar Cells, vol. 285, p. 113510, 2025.
[165] M. Wu, X. Li, Z. Ying, Y. Chen, X. Wang, M. Zhang, S. Su, X. Guo, J. Sun, and C. Shou, "Reconstruction of the indium tin oxide surface enhances the adsorption of high‐density self‐assembled monolayer for perovskite/silicon tandem solar cells," Advanced Functional Materials, vol. 33, no. 46, p. 2304708, 2023.
[166] W. Chai, L. Li, W. Zhu, D. Chen, L. Zhou, H. Xi, J. Zhang, C. Zhang, and Y. Hao, "Graded heterojunction improves wide-bandgap perovskite for highly efficient 4-terminal perovskite/silicon tandem solar cells," Research, vol. 6, p. 0196, 2023.
[167] S. Ma, W. Zhu, T. Han, C. Zhang, P. Gao, Y. Guo, Z. Song, Y. Ni, and D. Qiao, "Pure-phase, large-grained wide-band-gap perovskite films for high-efficiency, four-terminal perovskite/silicon tandem solar cells," ACS Applied Materials & Interfaces, vol. 15, no. 34, pp. 40719-40726, 2023.
[168] T. Duong, T. Nguyen, K. Huang, H. Pham, S. G. Adhikari, M. R. Khan, L. Duan, W. Liang, K. C. Fong, and H. Shen, "Bulk incorporation with 4‐methylphenethylammonium chloride for efficient and stable methylammonium‐free perovskite and perovskite‐silicon tandem solar cells," Advanced Energy Materials, vol. 13, no. 9, p. 2203607, 2023.
[169] C. Li, S. Dogan, Y. Li, H. Zhang, S. Tang, Z. Yuan, L. Liang, Z. Zhang, Y. Wang, and C. Liu, "Mitigating VOC Loss in Single‐Junction and Four‐Terminal Tandem Perovskite/Si Photovoltaics with D‐A Phthalocyanines Layers," Advanced Energy Materials, vol. 15, no. 4, p. 2402856, 2025.
[170] L. A. Castriotta, M. Stefanelli, L. Vesce, E. Magliano, E. Leonardi, F. Di Giacomo, H. Nikbakht, L. Serenelli, L. Martini, and F. Menchini, "Semitransparent Perovskite Solar Submodule for 4T Tandem Devices: Industrial Engineering Route Toward Stable Devices," IEEE Journal of Photovoltaics, 2024.
校內:2030-08-25公開