| 研究生: |
方柏鈞 Fang, Bo-Jyun |
|---|---|
| 論文名稱: |
層狀結構表面聲波濾波器之耦合模型分析 Analysis of Layered Surface Acoustic Wave Filters by Using Coupling-of-mode Model |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 表面聲波 、層狀結構 、濾波器 、氮化鋁 |
| 外文關鍵詞: | SAW, Layered Structure, Filter, AlN |
| 相關次數: | 點閱:108 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面聲波元件(Surface Acoustic Wave Devices) 為通訊系統中重要的關鍵零組件。為了順應高頻化的趨勢,層狀表面聲波元件已引起各方的興趣。藉由不同基底材料與壓電薄膜所組成之層狀表面聲波元件,可同時具備高波速、高機電耦合係數、低傳輸損失、溫度穩定性高等特性。本研究採用壓電性質優良的氮化鋁(AlN)薄膜來提高波速,並選用Si[100]為基板,研究以此兩種材料所組成的層狀二埠表面聲波元件。
首先以層狀壓電介質之波傳理論為基礎,配合八階波動方程來計算層狀表面聲波元件之頻散關係。利用矩陣法建立層狀壓電介質之波傳理論,據此分析表面聲波元件基底材料之波傳行為。
在第二個部分,本文利用Cross & Schmidt提出的耦合模型(Coupling-of-Modes,COM),作為分析表面聲波元件之理論依據,進而推導出二埠表面聲波濾波器之傳輸矩陣,模擬二埠表面聲波濾波器頻率響應。
在最後部分,以層狀結構下的波傳特性為基礎,以頻散關係(dispersion relation) 、有效介電常數(effective permittivity)與機電耦合係數等,對表面波聲波速偏移(phase velocity shift)、等效電阻值、等效電容值、衰減係數、相位常數和金屬閘極互耦合係數等進行修正,接著討論各項設計參數,交指叉電極對數、交叉長度、金屬柵欄數目、延遲距離及金屬厚度…等對中心頻率響應之影響,作為元件設計之依據。最後據此設計出以AlN/Si[100]作為壓電基板材料、中心頻率為650MHz的二埠表面聲波濾波器。
In recent years, there has been an increasing interest for high-frequency operation in the surface acoustic wave (SAW) devices of layered structure, which compose of several thin films with varied piezoelectric properties. The layered SAW devices have the merits of high electromechanical coupling coefficient, low insertion loss, high characteristic of temperature stability and thus can support high speed of surface acoustic wave. In this project, we studied the layered surface acoustic wave in the piezoelectric material of single crystal aluminum nitride (AlN) deposited on a Si[100] substrate.
In the first part of this thesis, the dispersion relations for a general piezoelectric layered medium is obtained based on the theory of wave propagation in layered media and the Christoffel’s wave displacement equation. The dispersion relations can be transformed in the matrix form for further numerical calculation. The numerical analysis technique and a general-purpose computer program for a general piezoelectric layered medium was presented.
In the second part, we studied the coupling-of-mode (COM) model of Cross and Schmidt and investigated it’s applicability for analyzing the frequency response of layered SAW filters.
In the last part of this thesis, we demonstrated the bulk properties of the phase velocity shift, the effective resistance, the effective capacitance, the grating mutual-coupling coefficient and the attenuation constant must be adjusted for the layered SAW filters. In order to simulate frequency responses more accurately, we substituted these parameters mentioned above into the COM model and discussed the dependence of these parameters on the number of pairs of IDT, the cross length of the IDT, the delay distance, the number of the grating IDT pairs. Regarding AlN/Si [100 ] as the piezoelectric substrate material, the surface acoustic wave filters of two ports with the centre frequency of 650MHz was proposed.
[1]. Rayleigh, L., On waves propagating along the plane surface of an
elastic solid. Proc. London Math. Soc., 1885. 17: p. 4-11.
[2]. Rosenbaun, J.F., Bulk Acoustic Wave Theory and Devices. 1988: p. 45-79.
[3]. B.A.AULD, Acoustic Fields and Waves in Solids. Vol. 1. 1973, New York: Wiley.
[4]. Mason, W.P., Physical acoustics :principles and methods. Vol. 9. 1964, New York 35-126.
[5]. Royer, D., Elastic waves in solids :applications to signal processing 1980, Chichester,New York J. Wiley.
[6]. Nayfeh, A.H., Wave propagation in layered anisotropic media :with applications to composites 1995, Amsterdam,New York: Elsevier.
[7]. Schmidt, R.V., Voltmer, F.W., Piezoelectric Elastic Surface Waves in Anisotropic Layered Media. IEE Transactions on Microwave Theory and Techniques Society, 1969. 17(11): p. 920-926.
[8]. Nakahata, H.H., A., Theoretical Study on SAW Characteristics of Layered Structures Including a Diamond Layer. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995. 42(3): p. 362 - 375
[9]. Hadjoub, Z., Beldi, I., Thin film loading effects on SAW velocity dispersion curves. IEEE Electronics Letters, 1998. 34(3): p. 313 - 315
[10]. Tsubouchi, K.S., K.; Mikoshiba, N.;, AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3and AlN/Si. IEEE Ultrasonics Symposium, 1981: p. 375 - 380
[11]. Bu, G., Ciplys, D., Surface acoustic wave velocity in single-crystal AlN substrates. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006. 53(1): p. 251 - 254
[12]. 黃元伯, 耦合諧振結構表面聲波元件特性之探討. 國立成功大學電機工程研究所碩士論文, 2003.
[13]. Hashimoto, K.-y., Surface acoustic wave devices in telecommunications :modelling and simulation 2000, New York 191-214.
[14]. Campbell, C.K., Surface Acoustic Wave Device for Mobile and Wireless Communications. 1998: p. 308-314.
[15]. Kraus, J.D., Antennas. 1950: p. 66-67.
[16]. Li, R.C.M., Melngailis, J., The Influence of Stored Energy at Step Discontinuities on the Behavior of Surface-Wave Gratings. IEEE Transactions on Sonics and Ultrasonics, May 1975. 22(3): p. 189-198.
[17]. Wright, P.V.H., H.A., Theoretical Analysis of Second-Order Effects in Surface-Wave Gratings. Frequency Control, 34th Annual Symposium on., May 1980: p. 262-268.
[18]. P.V.Wright, Modeling and Experimental Measurements of the Reflection Properties of SAW Metallic Gratings. IEEE Ultrasonics Symposium, 1984: p. 54-63.
[19]. 王聖銘, 中頻表面聲波濾波器之設計與量測. 國立臺灣大學應用力學研究所碩士論文, 2002.
[20]. W.R.Smith, J., Studies of microwave acoustic transducers and dispersive delay lines, in Thesis in Applied Physics. December 1969, Stanford University: CA.
[21]. Wu, T.T., Chen, Y. Y., and Chou, T. T., Analysis of frequency response of a dispersive layered SAW filter using effective permittivity and coupling of modes model. Proceedings IEEE Ultrasonics Symposium 2002: p. 61-66.
[22]. Thorvaldsson, T., Analysis of the natural single phase unidirectional SAW transducer. IEEE Ultrasonics Symp., 1989: p. 91-96.
[23]. Thorvaldsson, T., Abbott, B.P., Low loss SAW filters utilizing the natural single phase unidirectional transducer (NSPUDT). IEEE Ultrasonics Symp., 1990: p. 43-48.
[24]. Datta, S., Surface Acoustic Wave Devices. 1986, New Jersey: Prentice-Hall.
[25]. Morgan, D.P., Surface-Wave Devices for Signal Processing. 1985, New York: Elsevier.
[26]. Thorvaldsson, T., Analysis of the natural single phase unidirectional SAW transducer. Proc. IEEE Ultra. Symposium, 1989: p. 91-96.
[27]. Farnell, G.W., Capacitance and Field Distributions for Interdigital Surface-Wave Transducers. IEEE Transactions on Sonics and Ultrasonics, 1970. 17(3): p. 188-195.
[28]. Liaw, H.M.a.H., F. S., SAW characteristics of sputtered aluminum nitride on silicon and gallium arsenide. Proc. IEEE Ultra. Symposium, 1994: p. 375-379.
[29]. Iborra, E.C., M., Effect of particle bombardment on the orientation and the residual stress of sputtered AlN films for SAW devices. IEEE Ultrasonics, Ferroelectrics and Frequency Control, 2004. 51(3): p. 352 - 358