簡易檢索 / 詳目顯示

研究生: 莊勝智
Chuang, Sheng-Chih
論文名稱: 以時間域熱反射率(TDTR)方式量測單晶直輝石熱傳導率及其應用
Using TDTR method to measure thermal conductivity of the single crystal orthopyroxenes and its implications
指導教授: 龔慧貞
Kung, Jennifer
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 頑火直輝石熱傳導率晶體順向排列時間域熱反射率量測地溫梯度
外文關鍵詞: orthoenstatite, thermal conductivity, lattice preferred orientation, TDTR methods, geothermal gradient
相關次數: 點閱:86下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在上部地函中,地函流(mantle flow)與上部地函熱傳輸息息相關。從震波資料觀測到剪力波在上部地函因介質非均向性(anisotropy)使其在水平及垂直分量上波速不同呈現分裂現象(shear wave splitting)。這可以由上部地函擄獲岩中橄欖石、輝石受應力(即地函流)會產生晶體順向排列(LPO)現象解釋。在礦物相晶體順向排列下,必影響岩石之熱傳導性質。所以本研究使用時間域熱反射方法(TDTR)來測量直輝石a、b、c三軸,在一系列不同的鐵鎂比例(Mg#)與含水量(至多接近1000 ppm)等變因,對於在常壓與高壓下的熱傳導率影響,來探討在上部地函輝石其因化學成份差異對於熱傳輸的影響,進而影響地球內部地溫梯度。發現常壓下天然直輝石(En72-En94),其含鎂量(Mg#)每增加0.1 mol%,熱傳導率值則會上升約0.6 Wm-1K-1至0.8 Wm-1K-1,且上升幅度對於c軸影響是較為顯著。在鎂端成份(En100)合成輝石含水量(少於1000ppm範圍)會不等量地降低熱導率,含水量越多輝石熱導率值下降越多。而c軸與a軸下降幅度較a軸顯著,與羥基缺陷在c軸與a軸有關。本研究發現在常溫高壓下輝石熱導率值隨壓力上升而上升,其中c軸樣品在特定壓力(低於Pbca- P21/c相變壓力)前呈現快速前線性上升,與直輝石常溫高壓拉曼觀察到c軸660與680cm-1兩對振動模異常發生壓力相近,可能暗示輝石矽氧四面體中長鏈O3-Si-O3鍵角變化會影響傳熱行為。

    In this study, thermal conductivity of the single crystal orthoenstatite were measured by the time-domain thermoreflectance (TDTR) methods at ambient conditions and high pressure conditions. The orientation of every crystals were identified by Laue diffraction method and polarized Raman spectroscopy. The experimental results showed that at the ambient conditions, the c-axis has the highest thermal conductivity value than other directions. The lowest value direction is the b-axis. Both Mg content and water content have significant influence to the thermal conductivity.
    At the high pressure conditions, thermal conductivity increases with the rising pressure. However, the slope (∂⁡(Λ_lat )/∂P) of c-axis are much higher than other orientations. The slope suddenly became flat as the pressure over the specific pressures, which are much lower than the phase transition (Pbca to P21/c) pressure indicated by XRD. We also compared with the Raman data of c-axis at the same conditions. Vibration modes at 660 and 680cm-1 have the abnormal phenomenon at the similar pressure, which may imply that the heat transfer behavior in the orthopyroxenes at the high pressure may be affect by the long tetrahedral chain distortion.

    摘要 I 英文延伸摘要 II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號表 XII 第一章 緒論 1 1-1 前言 1 1-2 頑火輝石結構與成分 2 1-3 回顧熱傳導率在常壓與高壓的量測方式 3 1-4 研究動機與科學目的 4 第二章 實驗方法  8 2-1高壓儀器設備 8 2-2輝石樣品   8 2-2-1樣品合成 9 2-2-2化學成份分析  9 2-2-3晶軸鑑定  10 2-3熱導率量測   11 第三章 實驗結果 28 3-1輝石拉曼量測工作 28 3-2常溫常壓熱導率量測 30 3-3常溫高壓熱導率量測 31 3-4時間域熱反射實驗誤差分析 32 第4章討論與總結 52 4-1直輝石在常溫常壓下熱傳導率行為 52 4-2直輝石在常溫高壓下熱傳導率行為 55 4-3總結 59 參考文獻 65 附錄 69

    Angel, R. J.; Jackson, J. M. , 2002. Elasticity and equation of state of orthoenstatite, MgSiO3. American Mineralogist. 87 (4): 558-561.
    Balan, E., Blanchard, M., Yi, H., & Ingrin, J ,2012. Theoretical study of OH-defects in pure enstatite. Physics and Chemistry of Minerals, 40(1), 41–50.
    Bell, D. R.; Ihinger, P. D.; Rossman, G. R., 1995. Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist. 80 (5-6): 465-474.
    Bell, D. R.; Rossman, G. R., 1992. Water in earth's mantle the role of nominally anhydrous minerals. Science. 255 (5050): 1391-1397.
    Bercegeay, C.; Bernard, S., 2005. First-principles equations of state and elastic properties of seven metals. Physical Review B. 72 (21).
    Cahill, D. G., 2004. Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments. 75 (12): 5119-5122.
    Chai, M.; Brown, J. M.; Slutsky, L. J., 1996. Thermal diffusivity of mantle minerals. Physics and Chemistry of Minerals. 23 (7): 470-475.
    Chopelas, A., 1999. Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high-pressure spectroscopic data. American Mineralogist. 84 (3): 233-244.
    Christensen, N. I., & Lundquist, S. M. , 1982. Pyroxene orientation within the uppwe mantle. Geological Society of America Bulletin, 93(4), 279-288.
    Christensen, N. I., 1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal of the Royal Astronomical Society. 76 (1): 89-111.
    Dera, P.; Finkelstein, G. J.; Duffy, T. S.; Downs, R. T.; Meng, Y.; Prakapenka, V.; Tkachev, S., Metastable high-pressure transformations of orthoferrosilite Fs(82). Physics of the Earth and Planetary Interiors 2013, 221, 15-21.
    Dugdale, J. S., & Macdonald, D. K. C. , 1955. Lattice thermal conductivity. Physical Review, 98(6), 1751-1752.
    Finkelstein, G. J.; Dera, P. K.; Duffy, T. S., 2015. Phase transitions in orthopyroxene (En(90)) to 49 GPa from single-crystal X-ray diffraction. Physics of the Earth and Planetary Interiors. 244: 78-86.
    Gibert, B.; Seipold, U.; Tommasi, A.; Mainprice, D., 2003.Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation fabric. Journal of Geophysical Research-Solid Earth. 108 (B8).
    Gung, Y. C.; Panning, M.; Romanowicz, B., 2003. Global anisotropy and the thickness of continents. Nature .422 (6933): 707-711.
    Harrel M.D, 2002.Anisotropic lattice thermal diffusivity in olivines and pyroxenes to high temperature
    Hasegawa, H., Kowatari, T., Shiroki, Y., Shibata, H., Ohta, H., & Waseda, Y. , 2012. Thermal Conductivity of Molten Silicate of Al2O3-CaO-Na2O-SiO2 Measured by Means of a Front Heating-Front Detection Laser Flash Method. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 43(6), 1413-1419.
    Hearn, E. H.; Humphreys, E. D.; Chai, M.; Brown, J. M., 1997.Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics. Journal of Geophysical Research-Solid Earth. 102 (B6): 11943-11956.
    Hofmeister, A. M., 1999. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science. 283 (5408): 1699-1706.
    Hofmeister, A. M., 2007. Pressure dependence of thermal transport properties. Proceedings of the National Academy of Sciences of the United States of America. 104 (22): 9192-9197.
    Hofmeister, A. M., 2012. Thermal diffusivity of orthopyroxenes and protoenstatite as a function of temperature and chemical composition. European Journal of Mineralogy. 24 (4): 669-681.
    Hofmeister, A. M.; Sehlke, A.; Whittington, A. G., 2014. Thermal diffusivity of Fe-rich pyroxene glasses and their melts. Chemical Geology. 384: 1-9.
    Horai, K. I., 1971. Thermal conductivity of rock-forming minerals. Journal of Geophysical Research. 76 (5): 1278-1308.
    Hsieh, W.P., 2011. Testing theories for thermal transportation using high pressure.
    Hsieh, W. P., 2015. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures. Journal of Applied Physics. 117 (23).
    Hua, F. T. S.; Dera, P.; Kung, J., 2020. Compressional Behavior of Hydrous Orthoenstatite: Insight into the Nature of LVZ under Continental Plate. Minerals. 10 (1).
    Hugh-jones, D. A.; Angel, R. J., 1994. A compressional study of MgSiO3 orthoenstatite up to 8.5 GPa. American Mineralogist. 79 (5-6): 405-410.
    Hunt, S. A.; Walker, A. M.; McCormack, R. J.; Dobson, D. P.; Wills, A. S.; Li, L., 2011. The effect of pressure on thermal diffusivity in pyroxenes. Mineralogical Magazine. 75 (5): 2597-2610.
    Jackson, J. M.; Sinogeikin, S. V.; Bass, J. D., 1999. Elasticity of MgSiO3 orthoenstatite. American Mineralogist. 84 (4): 677-680.
    Jackson, J. M.; Sinogeikin, S. V.; Bass, J. D., 2007. Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure. Physics of the Earth and Planetary Interiors. 161 (1-2): 1-12.
    Julian, C. L. , 1965. Theory of heat conduction in rare-gas crystals. Physical Review, 137(1A), A128-137.
    Jung, H.; Park, M.; Jung, S.; Lee, J., 2010. Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene. Journal of Earth Science. 21 (5): 555-568.
    Kobayashi, Y. 1974.Anisotropy of thermal diffusivity in olivine, pyroxene and dunite. J. Phys. Earth, 22, 359–373
    Libowitzky, E.; Rossman, G. R., 1997. An IR absorption calibration for water in minerals. American Mineralogist. 82 (11-12): 1111-1115.
    Lin, C. C., 2003. Pressure-induced metastable phase transition in orthoenstatite (MgSiO3) at room temperature: a Raman spectroscopic study. Journal of Solid State Chemistry. 174 (2): 403-411.
    Mao, H. K.; Xu, J.; Bell, P. M., 1986. Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research-Solid Earth and Planets. 91 (B5): 4673-4676.
    Mill K.C., 1993. The Influence of Structure on the Physico-chemical Properties of Slags Iron Steel Inst. Jpn. Int., vol. 33 (1), pp. 148–55
    Nicolas, A., & Christensen, N. I. (1987). Formation of anisotropy in upper mantle peridotites—A review. In K. Fuchs, & C. Froidevaux (Eds.), Composition, structure and dynamics of the lithosphere-asthenosphere system (Vol. 16, pp. 111–123). Washington DC: Am.Geo-phys.
    Osako, M., Ito, E., & Yoneda, A. , 2004. Simultaneous measurements of thermal c onductivity and thermal diffusivity for garnet and olivine under high pressure. Physics of the Earth and Planetary Interiors, 143, 311-320.
    Pacalo, R. E. G.; Gasparik, T., 1990. Reversals of the orthoenstatite‐clinoenstatite transition at high pressures and high temperatures. Journal of Geophysical Research-Solid Earth and Planets. 95 (B10): 15853-15858.
    Prechtel F, Stalder R , 2011. The potential use of OH-defects in enstatite as geobarometer. Contrib Mineral Petrol 162:615–623
    Ringwood, A. E. , 1991. Phase-transformations and their bearing on the constitution and dyamics of the mantle. Geochimica Et Cosmochimica Acta, 55(8), 2083-2110.
    Robie R.A., Hemingway B.S., Fisher J.R., Thermodynamic Properties of Min-erals and Related Substances at 298. 15 K and 1 Bar (10/sup 5/Pascals)Pressure and at Higher Temperatures, in Other Information: Portions of document are illegible, 1978. p. Medium
    Roufosse, M. C.; Jeanloz, R., 1983. Thermal conductivity of minerals at high pressure: The effect of phase transitions. Journal of Geophysical Research. 88 (NB9): 7399-7409.
    Sang, L. Q., Vanpeteghem, C. B., Sinogeikin, S. V., & Bass, J. D. , 2011. The elastic properties of diopside, CaMgSi2O6. American Mineralogist, 96(1), 224-227. doi:10.2138/am.2011.3674
    Schloessin, H. H.; Dvorak, Z., 1972. Anisotropic lattice thermal conductivity in enstatite as a function of pressure and temperature. Geophysical Journal of the Royal Astronomical Society. 27 (5): 499-516.
    Silver, P. G., & Kaneshima, S. (1993). Constraints on mantle anisotropy beneath Precambrian north-america from a transportable teleseismic experiment. Geophysical Research Letters, 20(12), 1127-1130.
    Skogby, H. , 2006. Water in natural mantle minerals I: Pyroxenes. In H. Keppler & J. R. Smyth (Eds.), Water in Nominally Anhydrous Minerals (Vol. 62, pp. 155-167).
    Stalder R, Kronz A, Schmidt B C ,2009. Raman spectroscopy of synthetic (Mg,Fe)SiO3 single crystals. An analytical tool for natural orthopyroxenes, European Journal of Mineralogy, 21, 27-32
    Stalder R, Prechtel F, Ludwig T , 2012. No site-specific infrared absorption coefficient for OH-defects in pure enstatite. Eur J Mineral 24:465–470
    Stangarone, C., Tribaudino, M., Prencipe, M., & Lottici, P. P. , 2016. Raman modes in Pbca enstatite (Mg2Si2O6): an assignment by quantum mechanical calculation to interpret experimental results. Journal of Raman Spectroscopy, 47(10), 1247-1258.
    Sundvall, R.; Stalder, R., 2011. Water in upper mantle pyroxene megacrysts and xenocrysts: A survey study. American Mineralogist. 96 (8-9): 1215-1227.
    Tommasi, A.; Gibert, B.; Seipold, U.; Mainprice, D., 2001. Anisotropy of thermal diffusivity in the upper mantle. Nature. 411 (6839): 783-786
    Wang, C., Yoneda, A., Osako, M., Ito, E., Yoshino, T., & Jin, Z. M. , 2014. Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14 GPa and 1000 K: Implication for the role of eclogite in subduction slab. Journal of Geophysical Research-Solid Earth, 119(8), 6277-6287.
    Xu, Y. S., Shankland, T. J., Linhardt, S., Rubie, D. C., Langenhorst, F., & Klasinski, K. , 2004. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors, 143, 321-336.
    Zhang, J. S., Dera, P., & Bass, J. D. , 2012. A new high-pressure phase transition in natural Fe-bearing orthoenstatite. American Mineralogist, 97(7): 1070-1074
    Zhang, J. S. , Reynard, B. , Montagnac, G. , Wang, R. C. , Bass, J. D., Pressure-induced Pbca-P2(1)/c phase transition of natural orthoenstatite: Compositional effect and its geophysical implications. American Mineralogist 2013, 98 (5-6), 986-992.
    Zhao, D. L.; Qian, X.; Gu, X. K.; Jajja, S. A.; Yang, R. G., 2016. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. Journal of Electronic Packaging. 138 (4).
    花柏榕、簡淑櫻、龔慧貞與王雁賓 (2012)。探索物質在極限環境之研究-大體積壓力機簡介。科儀新知34(1)

    下載圖示 校內:2024-04-12公開
    校外:2024-04-12公開
    QR CODE