簡易檢索 / 詳目顯示

研究生: 曾東雄
Tseng, Tung-Hsiung
論文名稱: 可撓式塑膠基板上研製有機薄膜電晶體和場效電晶體
Studies of Organic Thin Film Transistor (OTFT) and Field Effect Transistor (OFET) on Flexible Plastic Substrate
指導教授: 魏嘉玲
Wei, Chia-Ling
方炎坤
Fang, Yean-Kuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 136
中文關鍵詞: 有機場效電晶體有機薄膜電晶體五環素氧化銦錫氧化鋁鋅可撓式塑膠基板
外文關鍵詞: Flexible Plastic Substrate, AZO, Pentacene, ITO, OFET, OTFT
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用五環素摻雜鈉鹽,以真空蒸鍍的方式於可撓式塑膠基板上成長N型有機薄膜電晶體和場效電晶體。吾人先在P型和N型矽基板上,成長有機薄膜製備PN接面二極體並量測電流-電壓特性,來判定五環素摻雜鈉元素有機薄膜的正負性。其次,利用EDX分析證實鈉原子摻雜的有效性、FTIR研究各原子間的鍵結,和ESCA檢視有機薄膜的成份分布。再依據所得到的最佳參數,在PC(Polycarbonate)基板上研製有機薄膜電晶體和場效電晶體。
    本研究同時討論使用SiO2、SnO2和ZnO 三種材料當PC基板的緩衝層,成長AZO和ITO兩種高可見光穿透能力材料做閘極電極的可行性。吾人調整不同的製程參數並利用HALL量測片電阻值和電阻率、UV光譜儀分析透光度、SEM檢查薄膜的表面型態、XRD研究結晶方向和強度、AFM檢視薄膜表面的粗糙度,以得到最佳結晶品質和電性的AZO和ITO 薄膜。本論文發現以SnO2當緩衝層的ITO分子,能夠在PC基板上表現出較佳的電性品質,不需要高溫處理便有10的-3次方左右的電阻率。
    本研究所製備的N型有機薄膜電晶體的特性是場效移動率6.39x10-2cm2/Vs,臨限電壓1.72V、驅動電流6.18μA,開關電流比在103左右。相較於已發表使用F16CuPc的N型有機薄膜電晶體,其場效移動率在2x10-2cm2/Vs左右,本研究所製備的N型有機薄膜電晶體有較高的場效移動率6.39x10-2cm2/Vs,而臨限電壓是1.72V、驅動電流是6.18μA,開關電流比在10的3次方左右;相較於使用單一五環素的N型有機場效電晶體,其場效移動率在1.2x10-2cm2/Vs左右,本研究所製備的N型有機場效電晶體有較高的場效移動率0.74cm2/Vs,而臨限電壓是10.45V、驅動電流是42.4μA,開關電流比在10的3次方左右。

    In this thesis, we used sodium dopant to prepare the N-type Pentacene organic thin film transistor (OTFT) and organic field effect transistor (OFET) on flexible plastic substrate by a thermal evaporation system. We used EDX and ESCA to detect the dopant Na and the Na atomic concentration in the films, while the FTIR was applied to analyze bond structure.
    In addition, we deposited high transmittance AZO and ITO films as the gate electrode on different buffer layers including SiO2, SnO2 and ZnO. These AZO and ITO films were characterized by Hall measurement system to measure the sheet resistance and resistivity, Ultraviolet/Visible Spectrometer for transmittance measuring, SEM/AFM to examine morphology, and XRD for analyzing crystal structure. Based on the characterization, the deposition parameters of these gate electrode films were optimized, and used to prepare the OTFT and OFET on PC (Polycarbonate) substrate.
    Experiment results showed the developed OTFT device has the drift mobility of 6.39x10-2cm2/Vs, threshold voltage of 1.72V, driving current of 6.18uA, and on-off current ratio of 103. The drift mobility of 6.39x10-2cm2/Vs is better than that of reported 2x10-2cm2/Vs for the N-type OTFT device using F16CuPc. The developed OFET has a drift mobility of 0.74cm2/Vs and threshold voltage of 10.45V, which are better or comparable to that prepared by pure Pentacene with a drift mobility of 1.2x10-2cm2/Vs。

    中文摘要 I ABSTRACT III 目錄 V 附表目錄 XI 附圖目錄 XII 第一章 簡介 1 1-1 前言 1 1-2 可撓式基板材料 2 1-3 薄膜電晶體(Thin Film Transistor,TFT)和場效電晶體(Field Effect Transistor,FET) 3 1-4 有機材料簡介 4 1-5 論文架構 6 第二章 塑膠基板材料簡介 8 2-1 工程塑膠 8 2-2 PET(Polyethylene Terephthalate,聚對苯二甲酸乙酯) 9 2-3 PEN(Polyethylene Naphthalate,二甲酸乙二酯) 10 2-4 PES(Polyether Sulfone,聚醚) 10 2-5 PI(Polyimide,聚醯亞胺) 10 2-6 PC(Polycarbonate,聚碳酸酯) 11 第三章 電晶體的結構和工作原理 13 3-1 電晶體的基本結構 13 3-2 電晶體的工作原理 13 3-2-1 汲極電流相對於汲極電壓的I-V特性 13 3-2-2 汲極電流相對於閘極電壓的I-V特性 15 3-3 電晶體的特性參數 17 第四章 元件的成長流程、製程機台和量測儀器 20 4-1 電晶體相關成長技術和製程機台 21 4-1-1 真空蒸著系統(Thermal Vacuum Evaporation System) 21 4-1-2 射頻濺鍍系統(Radio-Frequency Sputtering System) 22 4-2 量測儀器 23 4-2-1 霍爾量測儀(Hall Measurement) 23 4-2-2 膜厚量測儀(α-step) 24 4-2-3 紫外光和可見光光譜儀(Ultraviolet/Visible Spectrometer,UV) 24 4-2-4 場放射型掃瞄式電子顯微鏡(Field Emission Scanning Electron Microscope,FESEM) 27 4-2-5 X光繞射儀(X-ray Diffractometer,XRD) 28 4-2-6 原子力顯微鏡(Atomic Force Microscope,AFM) 30 4-2-7 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy,FTIR) 30 4-2-8 表面化學分析儀(Electron Spectroscopy for Chemical Analysis System,ESCA) 30 4-2-9 HP4145參數分析儀 31 4-3 實驗材料 31 4-4 實驗製程順序 34 4-4-1 可撓式AZO和ITO電膜的製備流程 34 4-4-1-1 PC塑膠基板清洗 34 4-4-1-2 利用濺鍍系統成長緩衝層 34 4-4-1-3 使用濺鍍系統成長AZO和ITO電膜 35 4-4-1-4 AZO和ITO電膜的結晶品質和特性量測 35 4-4-2 可撓式有機薄膜的製備流程 35 4-4-2-1 PC塑膠基板清洗 36 4-4-2-2 利用濺鍍系統成長緩衝層 36 4-4-2-3 有機薄膜的沉積順序 36 4-4-2-4 有機薄膜的結晶品質和特性量測 37 4-4-3 可撓式有機薄膜電晶體的製備流程 37 4-4-3-1 PC塑膠基板清洗 38 4-4-3-2 利用濺鍍系統成長緩衝層 38 4-4-3-3 使用濺鍍系統成長閘極電極 38 4-4-3-4 使用濺鍍系統成長氧化介電層 38 4-4-3-5 使用真空蒸著系統成長有機N型主動層 39 4-4-3-6 使用真空蒸著系統成長汲極和源極電極 40 4-4-3-7 利用HP4145量測有機薄膜電晶體的I-V特性 41 4-4-4 可撓式有機場效電晶體的製備流程 41 4-4-4-1 PC塑膠基板清洗 41 4-4-4-2 利用濺鍍系統成長緩衝層 42 4-4-4-3 使用濺鍍系統成長閘極電極 42 4-4-4-4 使用濺鍍系統成長氧化介電層 42 4-4-4-5 使用真空蒸著系統成長有機P型主動層 42 4-4-4-6 使用真空蒸著系統成長有機N+層 43 4-4-4-7 使用真空蒸著系統成長汲極和源極電極 44 4-4-4-8 利用HP4145量測有機場效電晶體的I-V特性 45 第五章 實驗結果和討論 46 5-1 利用可撓式PC(Polycarbonate)塑膠基板成長氧化鋁鋅(AZO)軟電薄膜的特性分析 46 5-1-1 AZO電膜以不同參數成長時的HALL量測 47 5-1-2 AZO電膜以不同參數成長時的UV光譜儀分析 48 5-1-3 AZO電膜以不同參數成長時的SEM分析 48 5-1-4 AZO電膜以不同參數成長時的XRD分析 49 5-1-5 AZO電膜以不同參數成長時的AFM分析 49 5-1-6 AZO電膜的特性分析和討論 50 5-2 利用可撓式PC(Polycarbonate)塑膠基板成長氧化銦錫(ITO)軟電薄膜的特性分析 51 5-2-1 ITO電膜以不同參數成長時的HALL量測 51 5-2-2 ITO電膜以不同參數成長時的UV光譜儀分析 52 5-2-3 ITO電膜以不同參數成長時的SEM分析 52 5-2-4 ITO電膜以不同參數成長時的XRD分析 53 5-2-5 ITO電膜以不同參數成長時的AFM分析 53 5-2-6 ITO電膜的特性分析和討論 54 5-3 利用可撓式PC(Polycarbonate)塑膠基板成長有機薄膜的特性分析 55 5-3-1 有機正負型薄膜二極體的電流-電壓特性分析 55 5-3-2 五環素摻雜醋酸鈉的有機薄膜特性分析 57 5-3-3 五環素摻雜醯氨鈉的有機薄膜特性分析 58 5-4 利用可撓式PC(Polycarbonate)塑膠基板成長有機薄膜電晶體和場效電晶體的特性分析 60 5-4-1 有機薄膜電晶體的電性分析 61 5-4-2 有機場效電晶體的電性分析 62 5-4-3 結論 62 第六章 結論和未來展望 63 6-1 結論 63 6-2 未來展望 64 參考文獻 66 附表 71 附圖 78 誌謝 135 作者 136 附表目錄 表1-1 三種可撓式基板材料的特性比較 71 表2-1 常見可撓式塑膠基板材質的特性比較 72 表5-1 不同參數成長AZO於三種緩衝層材料上的片電阻值和電阻率 73 表5-2 不同參數成長AZO於SiO2和ZnO兩種緩衝層上的AFM量測數據 74 表5-3 不同參數成長ITO於三種緩衝層材料上的片電阻值和電阻率 75 表5-4 不同參數成長ITO於SiO2和SnO2兩種緩衝層上的AFM量測數據 76 表5-5 不同參數成長有機薄膜於PC基板上的鈉原子比例 77 附圖目錄 圖1-1五環素(Pentacene,C22H14)的分子結構圖 78 圖1-2 有機材料的電子傳輸方式 78 圖2-1 PC(Polycarbonate,聚碳酸酯)基板和PI(Polyimide,聚醯亞胺)基板 79 圖2-2 常見可撓式塑膠基板材料的分子結構圖 80 圖2-3 PI基板和PC基板表面的AFM分析圖 81 圖3-1 上閘極和下閘極電晶體的結構圖 82 圖3-2 交錯型和共面型電晶體的結構圖 82 圖3-3 微小汲極電壓時,汲極電流相對於閘極電壓的I-V圖 82 圖3-4 固定閘極電壓時,汲極電流相對於汲極電壓的I-V圖 83 圖3-5 固定汲極電壓時,汲極電流相對於閘極電壓的I-V圖 84 圖3-6 三種估計臨限電壓的方法 85 圖3-7 電晶體開關狀態和液晶分子透光度間的相互關係圖 86 圖4-1 不同參數成長AZO和ITO電膜於PC基板上的結構圖 87 圖4-2 有機薄膜成長在PC基板上的結構圖 88 圖4-3 有機薄膜電晶體和場效電晶體成長在PC基板上的結構圖 89 圖4-4 真空蒸著系統(Thermal Vacuum Evaporation System) 90 圖4-5 射頻濺鍍系統(Radio-Frequency Sputtering System) 91 圖4-6 可撓式AZO和ITO電膜的製備流程 92 圖4-7 可撓式有機薄膜的製備流程 93 圖4-8 可撓式有機薄膜電晶體的製備流程 94 圖4-9 可撓式有機場效電晶體的製備流程 95 圖5-1 不同參數成長AZO於三種緩衝層材料上的電阻率 96 圖5-2 不同參數成長AZO於SiO2和ZnO兩種緩衝層上的UV光譜儀分析 97 圖5-3 不同參數成長AZO於SiO2和ZnO兩種緩衝層上的SEM分析 98 圖5-4 使用65W濺鍍功率成長AZO於SiO2和ZnO兩種緩衝層上的SEM橫切面分析 104 圖5-5 使用65W濺鍍功率成長AZO於SiO2和ZnO兩種緩衝層上的XRD分析 106 圖5-6 SiO2和ZnO兩種緩衝層材料成長於PC基板上的SEM和AFM分析圖 107 圖5-7 不同參數成長AZO於SiO2和ZnO兩種緩衝層上的AFM粗糙度分析 108 圖5-8 不同參數成長ITO於三種緩衝層材料上的電阻率 109 圖5-9 不同參數成長ITO於SiO2和SnO2兩種緩衝層上的UV光譜儀分析 110 圖5-10 不同參數成長ITO於SiO2和SnO2兩種緩衝層上的SEM分析 111 圖5-11 使用70W濺鍍功率成長ITO於SiO2和SnO2兩種緩衝層上的SEM橫切面分析 117 圖5-12 使用70W濺鍍功率成長ITO於SiO2和SnO2兩種緩衝層上的XRD分析 118 圖5-13 SiO2和SnO2兩種緩衝層材料成長於PC基板上的SEM和AFM分析圖 119 圖5-14 不同參數成長ITO於SiO2和SnO2兩種緩衝層上的AFM粗糙度分析 120 圖5-15 PN二極體元件結構和電流-電壓的特性圖 121 圖5-16 有機正負型二極體的結構圖 122 圖5-17 五環素摻雜鈉鹽成長在P型矽基板上的電流-電壓圖 123 圖5-18 五環素摻雜鈉鹽成長在N型矽基板上的電流-電壓圖 124 圖5-19 不同參數成長五環素摻雜醋酸鈉的EDX分析 125 圖5-20 不同參數成長五環素摻雜醋酸鈉的FTIR分析 126 圖5-21 五環素摻雜鈉鹽成長在PC基板上的ESCA分析 127 圖5-22 不同參數成長五環素摻雜醯氨鈉的EDX分析 128 圖5-23 不同參數成長五環素摻雜醯氨鈉的FTIR分析 129 圖5-24 有機薄膜電晶體和場效電晶體成長在可撓式PC基板上的結構圖 130 圖5-25 使用ITO當閘極電極,1倍五環素摻雜9倍醯氨鈉的有機薄膜電晶體特性曲線 131 圖5-26 使用ITO當閘極電極,1倍五環素摻雜12倍醯氨鈉的有機薄膜電晶體特性曲線 132 圖5-27 使用ITO當閘極電極,1倍五環素摻雜15倍醯氨鈉的有機薄膜電晶體特性曲線 133 圖5-28 使用ITO當閘極電極的有機場效電晶體特性曲線 134

    [1] C. D. Sheraw, L. Zhou, J. R. Huang, L. Jia, J. A. Nichols, C. C. Kuo, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Flexible liquid crystal displays driven by organic thin film transistors on polymeric Substrates,” Device Research Conference, pp. 181-182, 2001.
    [2] T. K. Chuang, M. Troccoli, P. C. Kuo, A. Jamshidi-Roudbari, M. Hatalis, A. T. Voutsas, and T. Afentakis, “Process Technology for High-Resolution AM-PLED Displays on Flexible Metal-Foil Substrates,” Electrochemical and Solid-State Letters, Vol. 10, No. 8, pp. J92-J96, 2007.
    [3] F. Templier, B. Aventurier, P. Demars, J. L. Botrel, and P. Martin, “Fabrication of high performance low temperature poly-silicon backplanes on metal foil for flexible active-matrix organic light emission diode displays,” Thin Solid Films, Vol. 515, No. 19, pp. 7428-7432, 2007.
    [4] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production,” Proceeding of the IEEE, Vol. 93, No. 8, pp. 1500-1510, 2005.
    [5] J. Yu, J. G. Kim, J. O. Chung, and D. H. Cho, “An elastic/plastic analysis of the intrinsic stresses in chemical vapor deposited diamond films on silicon substrates,” Journal of Applied Physics, Vol. 88, No. 3, pp. 1688-1694, 2000.
    [6] Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Applied Physics Letters, Vol. 74, pp. 1177-1179, 1999.
    [7] T. J. King and K. C. Saraswat, “Polycrystalline silicon-germanium thin-film transistors,” IEEE Transactions on Electron Devices, Vol. 41, No. 9, pp. 1581-1591, 1994.
    [8] A. T. Hatzopoulos, I. Pappas, D. H. Tassis, and N. Arpatzanis, “Analytical current-voltage model for nanocrystalline silicon thin-film transistors,” Applied Physics Letters, Vol. 89, 193504, 2006.
    [9] S. Wagner, H. Gleskova, I. C. Cheng, and M. Wu, “Silicon for thin-film transistors,” Thin Solid Films, Vol. 430, No. 1-2, pp. 15-19, 2003.
    [10] S. P. Tiwari, V. R. Rao, H. S. Tan, E. B. Namdas, and S. G. Mhaisalkar, “Pentacene Organic Field Effect Transistors on Flexible substrates with polymer dielectrics,” International Symposium on VLSI Technology, System and Applications, pp. 1-2, 2007.
    [11] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene Organic Thin-Film Transistors - Molecular Ordering and Mobility,” IEEE Electron Device Letters, Vol. 18, No. 3, 1997.
    [12] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si,” Applied Physics Letters, Vol. 80, No. 16, pp. 2872-2874, 2002.
    [13] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting-diodes using TPD derivatives with diphenylstylyl groups as hole transport layer,” Thin Solid Films, Vol. 363, No. 1-2, pp. 33-36, 2000.
    [14] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, “Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer,” Applied Physics Letters, Vol. 83, No. 5, pp. 1038-1040, 2003.
    [15] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, No. 26, pp. 4108-4110, 1996.
    [16] Y. Jin, Z. Rang, M. I. Nathan, P. P. Ruden, C. R. Newman, and C. D. Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer,” Applied Physics Letters, Vol. 85, No. 19, pp. 4406-4408, 2004.
    [17] T. F. Guo, Z. J. Tsai, S. Y. Chen, T. C. Wen, and C. T. Chung, “Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors,” Journal of Applied Physics, Vol. 101, No. 12, pp. 124505.1-124505.4, 2007.
    [18] S. S. Kim, Y. S. Choi, K. Kim, J. H. Kim, and S. Im, “Fabrication of p-pentacene/n-Si organic photodiodes and characterization of their photoelectric properties,” Applied Physics Letters, Vol. 82, No. 4, pp. 639-641, 2003.
    [19] J. Lee, S. S. Kim, K. Kim, J. H. Kim, and S. Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films,” Applied Physics Letters, Vol. 84, No. 10, pp. 1701-1703, 2004.
    [20] C. W. Tang, “Two-layer organic photovoltaic cell,” Applied Physics Letters, Vol. 48, pp. 183-185, 1986.
    [21] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, and M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures,” Thin Solid Films, Vol. 451-452, pp. 515-517, 2004.
    [22] 陳金鑫、黃孝文, “有機電激發光材料與元件,” 五南圖書出版公司, 2005.
    [23] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment,” Japanese Journal of Applied Physics, Vol. 46, No. 4B, pp. 2753-2757, 2007.
    [24] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An iodine-doped polymer light-emitting diode,” Applied Physics Letters, Vol. 71, No. 17, pp. 2415-2417, 1997.
    [25] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger, “Polyacetylene, (Ch)x: n-type and p-type doping and compensation,” Applied Physics Letters, Vol. 33, No. 1, pp. 18-20, 1978.
    [26] B. Mebarki, S. Sumiya, R. Yoshida, M. Ito, M. Hori, T. Goto, S. Samukawa, and T. Tsukada, “Polycrystalline silicon film formation at low temperature using ultra-high-frequency plasma enhanced chemical vapor deposition,” Material Letters, Vol. 41, No. 1, pp. 16-19, 1999.
    [27] D. Hong, “Process Development and Modeling of Thin-Film Transistors,” Master’s Thesis, Oregon State University, 2005.
    [28] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, No. 12,pp. 606-608, 1997.
    [29] Hyo-Jun Park, Jin-Woo Park, Se-Young Jeong, and Chang-Sik Ha, “Transparent flexible substrates based on polyimides with aluminum doped zinc oxide (AZO) thin films,” Proceedings of the IEEE, Vol. 93, No. 8, 2005.
    [30] T. Y. Kang, M. J. Keum, H. I. Son, K. S. Kim, J. B. Lee, and K. H. Kim, “Preparation of AZO/ZnO/AZO/SiO2/Si thin film for FBAR,” IEEE Symposium on Ultrasonics, Vol. 2, pp. 2016-2019, 2006.
    [31] C. H. Yang, S. C. Lee, T. C. Lin, and S. C. Chen, “Electrical and optical properties of indium tin oxide films prepared on plastic substrates by radio frequency magnetron sputtering,” Thin Solid Films, Vol. 516, pp. 1984-1991, 2008.
    [32] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Low Subthreshold Swing HfLaO/Pentacene Organic Thin-Film Transistors,” IEEE Electron Device Letters, Vol. 29, No. 3, pp. 215-217, 2008.
    [33] David J. Gundlach, LiLi Jia, and Thomas N. Jackson, “Pentacene TFT with improved linear region characteristics using chemically modified source and drain electodes,” IEEE Electron Device Letters, Vol. 22, No. 12, pp. 571-573, 2001.
    [34] H. Klauk, “Organic Circuit on Flexible Substrates,” IEEE International Electron Devices Meeting, pp.446-449, 2005.

    下載圖示 校內:2012-07-14公開
    校外:2012-07-14公開
    QR CODE