| 研究生: |
曾東雄 Tseng, Tung-Hsiung |
|---|---|
| 論文名稱: |
可撓式塑膠基板上研製有機薄膜電晶體和場效電晶體 Studies of Organic Thin Film Transistor (OTFT) and Field Effect Transistor (OFET) on Flexible Plastic Substrate |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling 方炎坤 Fang, Yean-Kuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 有機場效電晶體 、有機薄膜電晶體 、五環素 、氧化銦錫 、氧化鋁鋅 、可撓式塑膠基板 |
| 外文關鍵詞: | Flexible Plastic Substrate, AZO, Pentacene, ITO, OFET, OTFT |
| 相關次數: | 點閱:109 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用五環素摻雜鈉鹽,以真空蒸鍍的方式於可撓式塑膠基板上成長N型有機薄膜電晶體和場效電晶體。吾人先在P型和N型矽基板上,成長有機薄膜製備PN接面二極體並量測電流-電壓特性,來判定五環素摻雜鈉元素有機薄膜的正負性。其次,利用EDX分析證實鈉原子摻雜的有效性、FTIR研究各原子間的鍵結,和ESCA檢視有機薄膜的成份分布。再依據所得到的最佳參數,在PC(Polycarbonate)基板上研製有機薄膜電晶體和場效電晶體。
本研究同時討論使用SiO2、SnO2和ZnO 三種材料當PC基板的緩衝層,成長AZO和ITO兩種高可見光穿透能力材料做閘極電極的可行性。吾人調整不同的製程參數並利用HALL量測片電阻值和電阻率、UV光譜儀分析透光度、SEM檢查薄膜的表面型態、XRD研究結晶方向和強度、AFM檢視薄膜表面的粗糙度,以得到最佳結晶品質和電性的AZO和ITO 薄膜。本論文發現以SnO2當緩衝層的ITO分子,能夠在PC基板上表現出較佳的電性品質,不需要高溫處理便有10的-3次方左右的電阻率。
本研究所製備的N型有機薄膜電晶體的特性是場效移動率6.39x10-2cm2/Vs,臨限電壓1.72V、驅動電流6.18μA,開關電流比在103左右。相較於已發表使用F16CuPc的N型有機薄膜電晶體,其場效移動率在2x10-2cm2/Vs左右,本研究所製備的N型有機薄膜電晶體有較高的場效移動率6.39x10-2cm2/Vs,而臨限電壓是1.72V、驅動電流是6.18μA,開關電流比在10的3次方左右;相較於使用單一五環素的N型有機場效電晶體,其場效移動率在1.2x10-2cm2/Vs左右,本研究所製備的N型有機場效電晶體有較高的場效移動率0.74cm2/Vs,而臨限電壓是10.45V、驅動電流是42.4μA,開關電流比在10的3次方左右。
In this thesis, we used sodium dopant to prepare the N-type Pentacene organic thin film transistor (OTFT) and organic field effect transistor (OFET) on flexible plastic substrate by a thermal evaporation system. We used EDX and ESCA to detect the dopant Na and the Na atomic concentration in the films, while the FTIR was applied to analyze bond structure.
In addition, we deposited high transmittance AZO and ITO films as the gate electrode on different buffer layers including SiO2, SnO2 and ZnO. These AZO and ITO films were characterized by Hall measurement system to measure the sheet resistance and resistivity, Ultraviolet/Visible Spectrometer for transmittance measuring, SEM/AFM to examine morphology, and XRD for analyzing crystal structure. Based on the characterization, the deposition parameters of these gate electrode films were optimized, and used to prepare the OTFT and OFET on PC (Polycarbonate) substrate.
Experiment results showed the developed OTFT device has the drift mobility of 6.39x10-2cm2/Vs, threshold voltage of 1.72V, driving current of 6.18uA, and on-off current ratio of 103. The drift mobility of 6.39x10-2cm2/Vs is better than that of reported 2x10-2cm2/Vs for the N-type OTFT device using F16CuPc. The developed OFET has a drift mobility of 0.74cm2/Vs and threshold voltage of 10.45V, which are better or comparable to that prepared by pure Pentacene with a drift mobility of 1.2x10-2cm2/Vs。
[1] C. D. Sheraw, L. Zhou, J. R. Huang, L. Jia, J. A. Nichols, C. C. Kuo, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Flexible liquid crystal displays driven by organic thin film transistors on polymeric Substrates,” Device Research Conference, pp. 181-182, 2001.
[2] T. K. Chuang, M. Troccoli, P. C. Kuo, A. Jamshidi-Roudbari, M. Hatalis, A. T. Voutsas, and T. Afentakis, “Process Technology for High-Resolution AM-PLED Displays on Flexible Metal-Foil Substrates,” Electrochemical and Solid-State Letters, Vol. 10, No. 8, pp. J92-J96, 2007.
[3] F. Templier, B. Aventurier, P. Demars, J. L. Botrel, and P. Martin, “Fabrication of high performance low temperature poly-silicon backplanes on metal foil for flexible active-matrix organic light emission diode displays,” Thin Solid Films, Vol. 515, No. 19, pp. 7428-7432, 2007.
[4] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, “Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production,” Proceeding of the IEEE, Vol. 93, No. 8, pp. 1500-1510, 2005.
[5] J. Yu, J. G. Kim, J. O. Chung, and D. H. Cho, “An elastic/plastic analysis of the intrinsic stresses in chemical vapor deposited diamond films on silicon substrates,” Journal of Applied Physics, Vol. 88, No. 3, pp. 1688-1694, 2000.
[6] Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Applied Physics Letters, Vol. 74, pp. 1177-1179, 1999.
[7] T. J. King and K. C. Saraswat, “Polycrystalline silicon-germanium thin-film transistors,” IEEE Transactions on Electron Devices, Vol. 41, No. 9, pp. 1581-1591, 1994.
[8] A. T. Hatzopoulos, I. Pappas, D. H. Tassis, and N. Arpatzanis, “Analytical current-voltage model for nanocrystalline silicon thin-film transistors,” Applied Physics Letters, Vol. 89, 193504, 2006.
[9] S. Wagner, H. Gleskova, I. C. Cheng, and M. Wu, “Silicon for thin-film transistors,” Thin Solid Films, Vol. 430, No. 1-2, pp. 15-19, 2003.
[10] S. P. Tiwari, V. R. Rao, H. S. Tan, E. B. Namdas, and S. G. Mhaisalkar, “Pentacene Organic Field Effect Transistors on Flexible substrates with polymer dielectrics,” International Symposium on VLSI Technology, System and Applications, pp. 1-2, 2007.
[11] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene Organic Thin-Film Transistors - Molecular Ordering and Mobility,” IEEE Electron Device Letters, Vol. 18, No. 3, 1997.
[12] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si,” Applied Physics Letters, Vol. 80, No. 16, pp. 2872-2874, 2002.
[13] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting-diodes using TPD derivatives with diphenylstylyl groups as hole transport layer,” Thin Solid Films, Vol. 363, No. 1-2, pp. 33-36, 2000.
[14] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, “Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer,” Applied Physics Letters, Vol. 83, No. 5, pp. 1038-1040, 2003.
[15] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, No. 26, pp. 4108-4110, 1996.
[16] Y. Jin, Z. Rang, M. I. Nathan, P. P. Ruden, C. R. Newman, and C. D. Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer,” Applied Physics Letters, Vol. 85, No. 19, pp. 4406-4408, 2004.
[17] T. F. Guo, Z. J. Tsai, S. Y. Chen, T. C. Wen, and C. T. Chung, “Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors,” Journal of Applied Physics, Vol. 101, No. 12, pp. 124505.1-124505.4, 2007.
[18] S. S. Kim, Y. S. Choi, K. Kim, J. H. Kim, and S. Im, “Fabrication of p-pentacene/n-Si organic photodiodes and characterization of their photoelectric properties,” Applied Physics Letters, Vol. 82, No. 4, pp. 639-641, 2003.
[19] J. Lee, S. S. Kim, K. Kim, J. H. Kim, and S. Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films,” Applied Physics Letters, Vol. 84, No. 10, pp. 1701-1703, 2004.
[20] C. W. Tang, “Two-layer organic photovoltaic cell,” Applied Physics Letters, Vol. 48, pp. 183-185, 1986.
[21] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, and M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures,” Thin Solid Films, Vol. 451-452, pp. 515-517, 2004.
[22] 陳金鑫、黃孝文, “有機電激發光材料與元件,” 五南圖書出版公司, 2005.
[23] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment,” Japanese Journal of Applied Physics, Vol. 46, No. 4B, pp. 2753-2757, 2007.
[24] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An iodine-doped polymer light-emitting diode,” Applied Physics Letters, Vol. 71, No. 17, pp. 2415-2417, 1997.
[25] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger, “Polyacetylene, (Ch)x: n-type and p-type doping and compensation,” Applied Physics Letters, Vol. 33, No. 1, pp. 18-20, 1978.
[26] B. Mebarki, S. Sumiya, R. Yoshida, M. Ito, M. Hori, T. Goto, S. Samukawa, and T. Tsukada, “Polycrystalline silicon film formation at low temperature using ultra-high-frequency plasma enhanced chemical vapor deposition,” Material Letters, Vol. 41, No. 1, pp. 16-19, 1999.
[27] D. Hong, “Process Development and Modeling of Thin-Film Transistors,” Master’s Thesis, Oregon State University, 2005.
[28] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, No. 12,pp. 606-608, 1997.
[29] Hyo-Jun Park, Jin-Woo Park, Se-Young Jeong, and Chang-Sik Ha, “Transparent flexible substrates based on polyimides with aluminum doped zinc oxide (AZO) thin films,” Proceedings of the IEEE, Vol. 93, No. 8, 2005.
[30] T. Y. Kang, M. J. Keum, H. I. Son, K. S. Kim, J. B. Lee, and K. H. Kim, “Preparation of AZO/ZnO/AZO/SiO2/Si thin film for FBAR,” IEEE Symposium on Ultrasonics, Vol. 2, pp. 2016-2019, 2006.
[31] C. H. Yang, S. C. Lee, T. C. Lin, and S. C. Chen, “Electrical and optical properties of indium tin oxide films prepared on plastic substrates by radio frequency magnetron sputtering,” Thin Solid Films, Vol. 516, pp. 1984-1991, 2008.
[32] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Low Subthreshold Swing HfLaO/Pentacene Organic Thin-Film Transistors,” IEEE Electron Device Letters, Vol. 29, No. 3, pp. 215-217, 2008.
[33] David J. Gundlach, LiLi Jia, and Thomas N. Jackson, “Pentacene TFT with improved linear region characteristics using chemically modified source and drain electodes,” IEEE Electron Device Letters, Vol. 22, No. 12, pp. 571-573, 2001.
[34] H. Klauk, “Organic Circuit on Flexible Substrates,” IEEE International Electron Devices Meeting, pp.446-449, 2005.