簡易檢索 / 詳目顯示

研究生: 黃聖嘉
Huang, Sheng-Chia
論文名稱: 金氧半無線溫度感測晶片之研製
The Implementation of CMOS Wireless Temperature Sensing Chip
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 136
中文關鍵詞: 三角積分調變感測雙載子接面電晶體
外文關鍵詞: sigma-delta, modulation, FSK, PLL
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在半導體製程技術日益成熟與各種電路技巧蓬勃發展的今天,將生理訊號透過特定的感測機制來作無線遙測監控以及系統晶片化一直是各界努力的目標。論文的第一部份,我們設計並且實現了一個適用於處理生醫訊號的無線傳輸調變器,包含了一個二階三角積分調變器以及利用頻率鍵移原理來作數位訊號調變的後端電路。此無線傳輸調變器使用台積電0.18um 1P6M金氧半混合訊號製程來實現。晶片量測結果在訊號頻寬為4kHz且超取樣率為128倍的情況下,最大SNR為約55dB,DR約為59dB左右,在正常操作下功率消耗不超過1mW。

      在論文的第二部份,延續第一部份的實作,我們設計了一個適用於互補式金氧半製程的溫度感測電路,使用串接之寄生雙載子電晶體來當量測溫度元件。透過單點校正的步驟,在-50度~125度之間最大誤差不超過正負2.5度,在常用的20度~60度之間誤差只有正付0.3度。感測器將溫度變化轉換為電壓訊號,再由三角積分調變器作類比數位轉換,並且將數位資訊作頻率鍵移調變達到無線傳輸的條件。不同於論文第一部份的作法,在頻率鍵移調變器的部分我們改以鎖相迴路來提供更穩定的載波源,利用鎖相迴路的參考頻率與晶片外部的耦合電容值來達到頻率鍵移調變的效果。待晶片下線返回後將量測相的數據與效能。

     In the CMOS technology, designing the functionally and economically feasible combination of the sensor with biomedical signal processing as a bio-telemetry monitor and SOC is targeted today. The first part in this thesis is introduced to design and implement a wireless modulator for biomedical application. This modulator is included a single stage two order sigma-delta modulator and Frequency Shift Keying (FSK) circuit for digital signal modulation. The wireless modulator was integrated in TSMC 0.18um 1P6M CMOS mixed signal technology. The measured results can be achieved a peak SNR of 55B and a dynamic range of 59dB with signal bandwidth of 4kHz and oversampling ratio of 128. The power consumption is less than 1mW under normal operation.

     The second part, it is achieved of the first part, the temperature sensor circuit is processed by CMOS technologies. We use serial parasitic substrate bipolar transistor as a temperature sensor. After the One-point calibration, for the range between -50C~125C, the error can be reduced below 2.5C, and the range between 20C~60C, the error is only within 0.3C. Sigma Delta Modulator can translate the voltage of the variant temperature to digital signal and then it can modulate FSK modulator. Utilizing the coupling capacitor with the reference frequency in the Phase Locked Loop can be imitated as a FSK modulator, it can be measured and researched when the chip come back in this thesis.

    目錄 第一章:緒論 1-1 前言.......................................................................1 1-2 研究目的與方法.............................................................1 1-3 章節提要...................................................................2 第二章:無線溫度感測訊號發射器原理介紹 2-1 生醫訊號遙測系統概念簡介...................................................4 2-2 無線溫度感測訊號發射晶片架構簡介...........................................5 第三章:溫度感測器與三角積分調變器原理介紹 3-1 CMOS 溫度感測器原理介紹....................................................8 3-1-1 溫度感測發展歷史回顧.....................................................8 3-1-2 溫度感測器設計考量......................................................10 3-1-3 電晶體溫度感測器........................................................12 3-1-4 能階差參考電壓原理簡介..................................................14 3-2 三角積分調變器原理介紹..................................................16 3-2-1 三角積分A/D轉換器.............................................17 3-2-2 量化誤差.........................................................19 3-2-3 超取樣原理.......................................................21 3-2-4 雜訊移頻原理.....................................................23 3-2-5 一階及二階三角積分調變器.........................................24 3-2-6 數位濾波器及抽樣技術原理.........................................28 第四章:鎖相迴路與頻率鍵移調變原理介紹 4-1 鎖相迴路原理介紹..........................................................31 4-1-1 相位/頻率檢測器原理簡介..........................................32 4-1-2 電荷汞泉原理.....................................................34 4-1-3 迴路濾波器原理...................................................35 4-1-4 壓控震盪器與除頻器原理..................................................37 4-1-5 除頻器原理..............................................................41 4-1-6 三階電荷幫浦式鎖相迴路分析..............................................42 4-2 頻率鍵移調變原理介紹......................................................44 4-2-1 基本數位調變方式.................................................45 4-2-2 頻率鍵移調變原理.................................................48 第五章:設計與實現生醫訊號用無線傳輸調變器 5-1 實現生醫訊號用無線傳輸調變器..............................................52 5-1-1 設計流程與規格...................................................52 5-1-2 以SIMULINK作系統模擬.............................................54 5-2 交換電容式積分器..........................................................58 5-2-1 運算放大器.......................................................63 5-2-2 偏壓電路........................................................ 66 5-3 ADC與DAC.................................................................68 5-3-1 比較器...........................................................68 5-3-2 一位元數位類比轉換器.............................................69 5-4 非重疊時脈產生器..........................................................69 5-5 二階三角積分調變器........................................................71 5-6 頻率鍵移調變電路..........................................................71 5-6-1 電壓控制振盪器...................................................72 5-6-2 頻率鍵移調變切換電路.............................................74 5-7 模擬結果與佈局............................................................76 5-8 晶片量測結果..............................................................78 第六章:設計與實現互補式金氧半無線溫度感測晶片 6-1 實現無線溫度感測訊號發射晶片..............................................83 6-1-1 設計流程與規格....................................................84 6-2 負溫度感測電路............................................................86 6-2-1 能階差參考電壓產生器電路..........................................86 6-2-2 溫度感測器電路....................................................89 6-3 鎖相迴路設計..............................................................92 6-3-1 計流程與規格......................................................92 6-3-2 以SIMULINK作系統模擬..............................................93 6-3-3 相位/頻率檢測器與電荷汞泉.........................................95 6-3-4 迴路濾波器與除頻器................................................97 6-4 雙端環狀壓控振盪器........................................................99 6-4-1 偏壓電路.........................................................100 6-4-2 環狀振盪器.......................................................102 6-4-3 緩衝電路.........................................................104 6-5 以鎖相迴路實現頻率鍵移調變...............................................106 6-6 模擬結果與佈局...........................................................109 6-7 量測考量與測試環境.......................................................116 第七章:結論與未來展望 7-1 結論.....................................................................117 7-2 未來展望.................................................................118 參考文獻...................................................................119

    參考文獻

    [1] A. Bakker and J. Huijsing, “HIGH-ACCURACY CMOS SMART TEMPERATURE SENSORS” Kluwer Academic Publishers, 2000.

    [2] A. Bakker and J.H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE Trans. Solid-State Circuits, vol. 31, pp. 933-937, July, 1996.

    [3] A. Boni, “Op-amps and startup circuits for CMOS bandgap references with near 1-V supply,” IEEE J. Solid-State Circuits, vol. 37, no.10 pp.1339-1343, Dec. 2002.

    [4] Andreas Laute and Jeff Peter Thcsys Mikroclektronik Produkte GmbII, “A Fully Silicon Monolithic Integrated 868/915MHz FSKKIFMIASK Transmitter Chip” 0-7803-6255-1/00/$1I).cI0 (c) 2000 IEEE

    [5] B.Razavi , “Design of Analog CMOS Integrated Circuit” Mc Graw Hill Education, 2000.

    [6] CHRISTIAN C. ENZ, GABOR V. TEMES, “Circuit Technique for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization” IEEE, VOL. 84, NO. 11. NOVEMER 1996.

    [7] C. Renato T. de Mori, P. Cesar Crepaldi, T. Cleber Pimenta, “A 3-V 12-Bit second order sigma-delta modulator design in 0.8-um CMOS,” Grupo de Microeletronic a-Escola federal de Engenharia de Itajuba pp. 124-129, 2001.

    [8] D. A. Johns and K. Martin, “Analog integrated circuit design,” John Wiley & Sons,New York, 1997.

    [9] Dean Banerjee, “PLL Performance, Simulation, and Design”, ISBN:0970820712.

    [10] Gardner, F, “Charge-Pump Phase-Lock Loops”, IEEE Transactions onCommunications, Volume: 28, Issue: 11, Nov 1980 Pages: 1849 – 1858.

    [11] H. Banba, H. Shiga, etc. , “A CMOS bandgap reference circuit with sub-1-v operation,” IEEE J. Solid-State Circuits, vol.34, NO.5, pp.670-674, May 1999.

    [12] Herzel, F.; Razavi, B., “ A study of oscillator jitter due to supply and substrate noise”, IEEE Transaction on Circuits and Systems II: Analog and Digital Signal Processing, Volume: 46, Issue: 1, Jan. 1999 Pages: 56 – 62.

    [13] I. Fujimori, L. Longo, and A. Hairapetian, “A 90-dB SNR 2.5-MHz output rate ADC using cascaded multi bit delta-sigma modulation at 8x oversampling ratio,” IEEE J. of Solid-State Circuits, vol. 35, no. 12, pp. 1820-1828, December 2000.

    [14] John P. Hayes, “Introduction to Digital Logic Design”, ISBN: 0201154617, Publisher: Addison Wesley.

    [15] June-Ming Hsu; Guang-Kaai Dehng; Ching-Yuan Yang; Chu-Yuan Yang; Shen-Iuan Liu, “Low-voltage CMOS frequency synthesizer for ERMES pager application”, IEEE Transaction on Circuits and Systems II: Analog and Digital Signal Processing, Volume: 48, Issue: 9, Sept. 2001 Pages: 826 – 834.

    [16] K. D. Chen, and T. H. Kuo, “An improved technique for reducing baseband tones in sigma-delta modulators employing data weighted averaging algorithm without adding dither,” IEEE Trans. on CAS II, vol. 46, no. 1, pp. 63-68, Jan. 1999.

    [17] Keen, William O., “An analysis and performance Evaluation of a Passive FilterDesign Technique for Charge Pump Phase looked Loop Application Note 1001”,National Semiconductor.

    [18] Manop Thamsirianunt & Tadeusz A. Kwasniewski “CMOS VCOs for PLL Frequency Synthesis in GHz Digital Mobile Radio Communications” IEEE 1995 CUSTOM INTEGRATED CIRCUITS CONFERENCE

    [19] M. Rebeschini, N.V. Bavel, P. Rakers, R. Greene, J. Caldwell, and J. Hang, “A 16-b 160-kHz CMOS A/D converter using sigma-delta modulation,” IEEE J. of Solid-State Circuits, vol. 25, no. 2, pp. 431-440, April 1990.

    [20] P. Aziz, H. Sorensen, and J. Spiegel, ”An overview of sigma-delta converters,” IEEE Signal Processing Magazine, pp. 61-84, January 1996.

    [21] P. Ferguson, A. Ganesan, and R. Adams, “One bit higher order sigma-delta A/D converters,” Proc. 1990 IEEE Int. Symp. Circuits Syst., pp. 890-893, May 1990.

    [22] S. Brigati, F. Francesconi, P. Malcovati, and F. Maloberti, “A fourth-order single-bit switch-capacitor sigma-delta modulator for distributed sensor applications,” IEEE Instrumentation and Measurement Technology Conference Anchorage, AK, USA, 21-23 pp. 253-256 May 2002.

    [23] Sungjoon Kim; Kyeongho Lee; Yongsam Moon; Deog-Kyoon Jeong; Yunho Choi;Hyung Kyu Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL”, IEEE J. Solid-State Circuits, Volume: 32, Issue: 5, May 1997 Pages: 691 – 700.

    [24] TH7108, 868/915MHz FSK/ASK/FM Transmitter. Preliminary Data Sheet, Thesys GmbH, Rev. 1.2, August 1999.

    [25] TSMC, ”TSMC 0.18um Mixed Signal/RF 1P6M+ Salicide 1.8v/3.3v Process Design Kit,” 2004.

    [26] 吳榮田, ”Standard CMOS low operating voltage linear type bandgap reference voltage generator” 國立台灣大學電機工程學研究所碩士論文, 民國九十年。

    [27] 洪裕隆, 三角積分調變器與溫度感測器研製” 國立成功大學電機工程學研究所碩士論文, 民國九十三年

    [28] 翁明鏟, ”Design of CMOS temperature sensors” 國立交通大學電子工程學電子研究所碩士論文, 民國九十一年

    [29] 陳俊宏, ” 旺陽電文獻: Sigma-Delta ADC 簡介” 旺陽電子股份有限公司, 2003

    [30] 薛子建, ”The design implementation of low pass multibit delta-sigma modulator ” 國立台灣大學電機工程學研究所碩士論文, 民國九十年六月

    [31] 羅振斌, ”運用鎖相迴路實現無線新電圖之研究” 國立成功大學電機工程學研究所碩士論文, 民國九十三年

    下載圖示 校內:2006-06-28公開
    校外:2006-06-28公開
    QR CODE