| 研究生: |
吳政鴻 Wu, Cheng-Hung |
|---|---|
| 論文名稱: |
以單電路模式同時處理多組錯誤對之高效能診斷向量之產生方法 An Efficient Diagnosis Method to Deal with Multiple Fault-Pairs Simultaneously Using a Single Circuit Model |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 錯誤診斷 、診斷向量產生方法 、同時診斷多組錯誤對 |
| 外文關鍵詞: | Fault diagnosis, diagnosis pattern generation, multi-pair diagnosis |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們提出一個高效能的診斷向量產生方法,目的在於針對多組由眾多錯誤兩兩所組成的錯誤對,能快速分辨出是否為等效錯誤對,當為非等效錯誤對時,我們的方法能產生診斷向量來讓這組錯誤對中的兩個錯誤產生出不同的輸出響應。針對所有錯誤對,原本的測試向量無法讓他們產生不同的輸出響應導致無法分辨這些錯誤對的情況發生時,我們提出一種新的錯誤輸入技術,能同時將所有無法被原本測試向量分開的錯誤對嵌入到一個電路中,其中針對每一組錯誤對只需額外嵌入部分邏輯閘,並可藉由新的錯誤輸入技術,將每組錯誤對轉化為一個固定型故障,故只需開啟一次一般的自動測試向量產生工具,即可針對所有轉化後的固定型故障來進行測試並產生診斷向量。
此技術達到高效能診斷向量產生方法的原因有四,第一是只需要產生一個電路即可針對所有錯誤對進行診斷向量產生流程。第二是使用一般的自動測試向量產生工具時需要針對電路產生對應的電路架構,我們的方法只需要一次即完成整個診斷向量產生流程。第三是我們的方法能同時針對多組錯誤對來產生診斷向量。第四是我們的提出的錯誤輸入技術只需要複製一份原來的電路當作主要架構,不像過去的方法大部分都需要複製成兩份,這會提高電路複雜度。實驗的部分我們針對廣為學界所使用的標準電路: ISCAS’89跟IWLS’05來做我們實驗的電路以及使用一般的自動向量測試工具作為我們的工具,結果表示我們的方法是第一個針對這兩套標準電路能完全正確處理所有錯誤對的方法。此外,我們還發現我們方法所產生的診斷向量的數量都小於過去所提出的方法。
We propose an efficient diagnosis-aware ATPG method that can quickly identify equivalent-fault pairs and generate diagnosis patterns for nonequivalent-fault pairs, where an (non)equivalent-fault pair contains two stuck-at faults that are (not) equivalent. A novel fault injection method is developed which allows one to embed all fault pairs undistinguished by the conventional test patterns into a circuit model with only one copy of the original circuit. Each pair of faults to be processed is transformed to a stuck-at fault and all fault pairs can be dealt with by invoking an ordinary ATPG tool for stuck-at faults just once. High efficiency of diagnosis pattern generation can be achieved due to 1) the circuit to be processed is read only once, 2) the data structure for ATPG process is constructed only once, 3) multiple fault pairs can be processed at a time, and 4) only one copy of the original circuit is needed. Experimental results show that this is the first reported work that can achieve 100% diagnosis resolutions for all ISCAS’89 and IWLS’05 benchmark circuits using an ordinary ATPG tool. Furthermore, we also find that the total number of patterns required to deal with all fault pairs in our method is smaller than that of the current state-of-the–art work.
[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design
[2] for Testability, Morgan Kaufmann, 2006.
[3] S. Venkataraman and S. B. Drummonds, “POIROT: A Logic Fault Diagnosis Tool and Its Applications,” in Proc. Int’l Test Conf., 2000, pp. 253-262.
[4] T. Bartenstein, D. Heaberlin, L. Huisman and D. Sliwinski, "Diagnosing Combinational Logic Designs Using the Single Location At-A-Time (SLAT) Paradigm", in Proc. Intl. Test Conf., 2001, pp. 287-296.
[5] X. Yu and R. D. Blanton, “Diagnosis-Assisted Adaptive Test,” IEEE Trans. on Computer-Aided Design, Vol. 31, No. 9, pp. 1405-1416, Sep. 2012.
[6] H. Tang, S. Manish, J. Rajski, M. Keim and B. Benware, “Analyzing Volume Diagnosis Results with Statistical Learning for Yield Improvement,” in Proc. European Test Symp., 2007, pp. 145-150.
[7] S. Wang and W. Wei, “Machine learning-based volume diagnosis,” in Proc. Design Automation and Test in Europe, 2009, pp. 902-905.
[8] R. Desineni, O. Poku, and R. D. Blanton, “A logic diagnosis methodology for improved localization and extraction of accurate defect behavior,” in Proc. Int’l Test Conf., pp. 1-10, 2006.
[9] W. C. Tam and R. D. Blanton, “Physically-Aware Analysis of Systematic Defects in Integrated Circuits,” IEEE Design & Test of Computer, Vol. 29, No. 5, pp. 81-93, Oct. 2012.
[10] X. Fan, H. Tang, Y. Huang, W.-T. Cheng, S.M. Reddy and B. Benware, “Improved volume diagnosis throughput using dynamic design partitioning,” in Proc. Int’l Test Conf., 2012, pp. 1-10.
[11] P.-Y. Hsueh, S.-F. Kuo, C.-W. Tzeng, J.-N. Lee and C.-F. Wu, “Case study of yield learning through in-house flow of volume diagnosis,” in Proc. VLSI Design, Automation and Test, 2013, pp. 1-4.
[12] I. Pomeranz and S. M. Reddy, “Diagnostic test generation based on subsets of faults,” Euroeaan Test Symposium, 2007.
[13] I. Pomeranz and S. M. Reddy, “Output-dependent diagnositic test generation,” in Proc. Int’l conf. on VLSI Design, 2010, pp.3-8.
[14] V. D. Agrawal, D. H. Baik, Y. C. Kim and K. K. Saluja, “Exclusive Test and its Applications to Fault Diagnosis,” in Proc. VLSI Design Conf., 2003, pp. 143-148.
[15] A. Veneris, R. Chang, M. S. Abadir, and M. Amiri, "Fault equivalence and diagnostic test generation using ATPG," in Proc. Int. Symp. Circuits and Systems, 2004, pp. 221-224.
[16] Y. Zhang and V. D. Agrawal, “A diagnostic test generation system,” in Proc. Int’l Test Conf., 2010, pp. 1-10.
[17] F. Zheng, K.-T. Cheng, X. Yan, J. Moondanos and Z. Hanna, “An Efficient Diagnostic Test Pattern Generation Framework Using Boolean Satisfiability,” in Proc. Asia Test Symp., 2007, pp. 288-294.
[18] J. Ye, X. Zhang, Y. Hu and X. Li, “Substantial Fault Pairs at-A-Time (SFPAT): An Automatic Diagnostic Pattern Generation Method,” in Proc. Asia Test Symp., 2010, pp. 192-197.
校內:2019-01-27公開