簡易檢索 / 詳目顯示

研究生: 謝文元
Hsieh, Wen-yuan
論文名稱: 熱碳還原法生長WO3奈米線及Ge-Si1-xGexOy核殼奈米線
Growth of WO3 nanowires and Ge-Si1-xGexOy core-shell nanowires via carbothermal reduction
指導教授: 林文台
Lin, Wen-tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 奈米線氧化鎢熱碳還原法
外文關鍵詞: WO3, Ge, carbothermal reduction, nanowires
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以熱碳還原法在溫度900°C-1100°C及Ar流量25-400sccm下,GeO2加入WO3粉末生長WO3 nanowires(以下簡稱NWs)及Ge-Si1-xGexOy核-殼奈米線(以下以Ge-SiGeO NWs稱之)的效應。在900°C時,由熱蒸鍍或熱碳還原WO3粉末並無觀察到有奈米線生成,加入了GeO2才使得WO3 NWs 生長。 WO3奈米線生長依觀察是以氣-固機制(V-S process)成長,GeO2於其中扮演了氧化劑的角色。在此研究不同溫度下,熱碳還原法在WO3/GeO?2/C的混合粉末下生長不同種類奈米線的機制。在900°C,Ar氣氛通入1-5%氧氣的環境下會使GeO2 NWs 及WO3-GeO2 core-shell NWs 生長。而愈多的氧氣通入會抑制奈米線的成長,因為會有許多碳粉被消耗掉。 而在1050°C-1100°C下,也觀察到Ge-SiGeO NWs遵循V-S機制生長。另外,將會個別討論WO3、GeO2與Ge-SiGeO NWs的生長機制。

    Effects of adding GeO2 to WO3 powders on enhancing the growth of WO3 nanowires (NWs) and Ge-Si1-xGexOy core-shell NWs ( Ge-SiGeO NWs) via the carbothermal reduction process in Ar at a flow rate of 25-400 sccm at a temperature of 900-1100°C were studied. Upon the thermal evaporation or carbothermal reduction of WO3 powders at 900°C no NWs were grown. The growth of WO3 NWs follows the vapor-solid (VS) process, where GeO2 powders act as an oxidizer. Introducing 1-5% O2 into flowing Ar enhanced the growth of GeO2 NWs and WO3-GeO2 core-shell NWs at 900°C. More O2 suppressed the growth of NWs because of the exhaustion of much graphite powders. At 1050-1100°C the growth of Ge-SiGeO NWs following the VS process were observed. In addition, the growth mechanisms of WO3, GeO2, and Ge-SiGeO NWs are discussed, respectively.

    中文摘要 I 英文摘要 II 誌謝感言 III 本文目錄 IV 圖目錄 VI 第一章 簡介 1 1.1 前言 1 1.2 奈米材料 2 1.3 一維奈米結構 3 第二章 文獻回顧 4 2.1 WO3及Ge介紹 4 2.2奈米線合成技術 6 2.3 奈米線生長機制 16 2.4 儀器原理 23 掃瞄式電子顯微鏡 23 掠角X光繞射儀 24 穿透式電子顯微鏡 25 X光能量散佈分析儀 26 2.5 研究動機 29 第三章 實驗步驟與方法 31 3.1 實驗設備及流程 31 3.2 基板清洗與TEM試片製備 32 基板清洗 32 TEM試片製備 33 3.3 實驗分析 33 掃瞄式電子顯微鏡分析 33 低掠角X光繞射分析 33 穿透式電子顯微鏡分析 34 陰極激發光光譜儀分析 34 第四章 結果與討論 35 4.1 WO3、GeO2奈米線及WO3-GeO2核殼奈米線之生長 35 4.2 熱碳還原WO3/GeO2粉末在Si基板上生長Ge-Si1-xGexOy核殼奈米線 39 4.3 Ge-Si1-xGexOy核殼奈米線的Cathode- luminescence(CL)分析 40 第五章 結論 42 參考文獻 43 圖目錄 圖2-1 WO3結構 50 圖2-2 Diamond cubic結構 50 圖2-3 陽極氧化鋁薄膜(AAM)的TEM影像 51 圖2-4 VLS機制示意圖 51 圖2-5 用Au作為催化劑成長Ge奈米線 (a)示意圖及Au-Ge相圖 (b)以TEM即時觀察奈米線生長情形 52 圖2-6 VLS機制和Solution-Liquid-Solid機制的比較 53 圖2-7 SFLS方法反應機構示意圖 53 圖2-8 以OAG合成Si奈米線的成核與成長示意圖 54 圖3-1 管型爐及氣體管線示意圖 55 圖3-2 粉末擺設示意圖 55 圖4-2 WO3/ GeO2/C粉末、溫度900°C、通入Ar 100sccm、在Si基板上 對WO3 nanowires的(a)TEM照片及 (b)繞射圖案 56 圖4-3 WO3/ GeO2/C粉末、溫度900°C、通入Ar 100sccm、在Si基板上 對WO3 nanorods的(a)TEM照片 (b)High resolution分析(其d值=3.78?) (c)繞射分析 57 圖4-5 WO3/ GeO2/C粉末、溫度900°C、在Si基板上 在Ar=100sccm流量下對 WO3 nanowires的(a)(b)兩側區域 (c)(d)中央區域 SEM分析片 58 圖4-6 WO3/ GeO2/C粉末、溫度900°C、Ar=95, O2=5sccm、在Si基板上 通入氧氣後的典型生成(a)(b)為微米線SEM/EDS (c)(d)為奈米SEM/EDS 59 圖4-8 WO3/ GeO2/C粉末、溫度900°C、Ar=295, O2=5sccm、在Si基板上在通入氧氣後對WO3-GeO2 core-shell nanowires的生成 (a)(b)(c)(d)TEM及 (e)(f)EDS分析 61 圖4-9 WO3/ GeO2/C粉末、溫度900°C、Ar=295, O2=5sccm、在Si基板上 在通入氧氣後對WO3-GeO2 core-shell nanowires的生成做(a)(b)TEM為作SAED後外層變化情形 (c)外層非晶質結構的TEM照片 (d)對外殼非晶質結構high resolution分析 62 圖4-10 WO3/ GeO2/C粉末、溫度900°C、Ar=295, O2=5sccm、在Si基板上 在通入氧氣後的生成GeO2 nanowires的TEM照片及EDS分析 63 圖4-11 WO3/ GeO2/C粉末、溫度900°C、Ar=295, O2=5sccm、在Si基板上在通入氧氣後的生成WO3 nanowires的(a)TEM照片及 (b)EDS分析 64 圖4-12 WO3/ GeO2/C粉末、溫度900°C、Ar=295, O2=5sccm、在Si基板上在通入氧氣後的生成WO3 nanorods的(a)TEM照片及 (b)繞射分析 64 圖4-13 WO3/ GeO2/C粉末、溫度900°C、在Si基板上 通入不同量氧氣(a)Ar=99, O2=1sccm (b) Ar=95, O2=5sccm 的XRD分析 65 圖4-14 WO3/ GeO2/C粉末、溫度1050°C、通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs的SEM照片 66 圖4-15 WO3/ GeO2/C粉末、溫度1100°C、通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs的SEM照片 66 圖4-16 WO3/ GeO2/C粉末、溫度1100°C、 通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs的(a)(b)TEM及繞射照片 (c)外層EDS (d)內層EDS 67 圖4-17 WO3/ GeO2/C粉末、溫度1100°C、通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs的TEM照片 68 圖4-19 WO3/ GeO2/C粉末、溫度1100°C、通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs 的XRD分析 69 圖4-20 WO3/ GeO2/C粉末、溫度1100°C、通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs 對其顆粒的(a)TEM照片及(b)EDS分析 70 圖4-20(c) WO3/ GeO2/C粉末、溫度1100°C、通入Ar 200sccm、在Si基板上生成Ge-SiGeO NWs 對應圖4-21(a)(b)所拍攝範圍的CL光譜分析 70 圖4-21 WO3/ GeO2/C粉末、溫度1050°C、通入Ar 200sccm、在Si基板上 生成Ge-SiGeO NWs 所做的CL影像分析 71

    1. R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
    2. Sumio Iijima, Nature 354(7), 56, 1991.00001
    3. 馬振基主編, “奈米科技原理與應用”, 全華科技, 92年1月.
    4. Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Adv. Funct. Mater. 13(1), 9, (2003).
    5. 郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.3.
    6. S. Iijima, Nature 354, 56 (1991)
    7. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995)
    8. M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Romas, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996)
    9. K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
    10. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J.M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
    11. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
    12. W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
    13. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, C.C. Xiong, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
    14. H. Dai, E.W. Wang, Y.Z. Lu, S.S. Fang, and C.M. Lieber, Nature 375, 769 (1995)
    15. L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
    16. Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
    17. Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
    18. Y. Saito, S. Uemura, Carbon 38, 169 (2000)
    19. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, and H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
    20. S.M. Lee, K.S. Park, Y.C. Chai, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, and Y.H. Lee, Synth. Met. 113, 209 (2000)
    21. R.T. Yang, Carbon 38, 623 (2000)
    22. J. Hu, T.W. Odom, and C.M. Lieber, and Acc. Chem. Res. 32, 435 (1999)
    23. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
    24. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384, 147 (1996)
    25. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
    26. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L Cheung, and C.M. Lieber, Science 289, 94 (2000)
    27. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
    28. J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
    29. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)
    30. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
    31. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001)
    32. Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
    33. A.P. Alivisatos, Science 271, 933 (1996)
    34. F. Marlow, M.D. M McGehee, D. Zhao, B.F. Chmelka, and G.D. Stucky, Adv. Mater. 11, 632 (1999)
    35. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
    36. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).
    37. G. Fang, Z. Liu, Y. Wang, H. Liuy, and K. Yao, J. Phys. D: Appl. Phys. 33, 2018 (2000).
    38. K. Bange, Sol. Energy Mater. Sol. Cells 58 (1999)
    39. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, J. Am. Chem. Soc. 123, 10639 (2001)
    40. S. Sawada, J. Phys. Soc. Jpn. 11, 1237 (1956).
    41. S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, and A. M. Al-Shukri, Sol. Energy Mater. Sol. Cells 71, 313 (2002).
    42. Zhu, Y. Q.; Hu, W.; Hsu, W. K.; Terrones, M.; Grobert, N.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Terrones, H. Chem. Phys.Lett. (1999), 309, 327.
    43. A.G. Cullis, L.T. Canham, and P.D.J. Calcott, J. Appl. Phys. 82, 909 (1997)
    44. J.R. Heath, F.K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
    45. T. Hanrath and B.A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
    46. D. Wang, Y.L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
    47. J.Q. Hu, X.M. Meng, Y. Jiang, C.S. Lee, and S.T. Lee, Adv. Mater. 15, 70 (2003)
    48. X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
    49. J. Hu, Y. Jiang, X. Meng, C.S. Lee, and S.T. Lee, Small 1, 429 (2005)
    50. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
    51. G. Gu, M. Burghard, G.T. Kim, G.S. Dusberg, P.W. Chiu, V. Krstic, S. Roth, and W.Q. Han, Appl. Phys. Lett. 90, 5747 (2001)
    52. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
    53. Y. Huang, J. Lin, J. Zhang, X.X. Ding, S.R. Qi, and C.C. Tang, Nanotechnology 16, 1369 (2005)
    54. C. Y. KO, W. T. Lin, Nanotechnology, 17(17):4464-4468 (2006)
    55. T. Guo,P. Nikolaev,A. Thess,D.T. Colbert,R.E. Smalley,Chem. Phys. Lett. 243, 49 (1995)
    56. Jing Goo Lee and Hirotaro Mori, Appl. Phys. Lett. 87, 213104 (2005)
    57. D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu and J. B. Xu, J. Raman Spec. (2007), 38, 176-180
    58. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
    59. Y.H. Tang, Y.F. Zhang, N. Wang, I. Bello, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
    60. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001)
    61. B.D. Yao, Y.F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
    62. Y.B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
    63. Zhu, Y. Q.; Hu, W.; Hsu, W. K.; Terrones, M.; Grobert, N.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Terrones, H. Chem. Phys.Lett. (1999), 309, 327.
    64. G. Gu, B. Zheng, W. Q. Han, S. Roth, J. Liu, Nano Lett. 2002, 2, 849–851
    65. Y. B. Li, Y Bando, D. Golberg, K. Kurashima, Chem. Phys. Lett. 367 (2003) 214-218
    66. J. Liu, Y. Zhao and Z. Zhang, J. Phys. Cond. Mater 15 (2003) L453-L461
    67. J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, Adv. Mater. (Weinheim, Ger.) 17, 2107 (2005).
    68. J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. S. Yang, and Z. L. Wang, Appl. Phys. Lett. 87, 223108 (2005).
    69. C. C. Liao, F. R. Chen, J. J. Kai, Sol. Energ. Mat. Sol. Cell 90 (2006) 1147-1155
    70. K. Hong, M. Xie and H. Wu, Nanotechnology 17 (2006) 4830-4833
    71. Y. Baek, Y. Song, and K. Yong, ADV. MATER. (2006), 18, 3105-3110
    72. W. Hu, Y. Zhu, W. Hsu, B. Chang, M. Terrones, N. Grobert, H. Terrones, J. Hare, H. Kroto, D. Walton, Appl. Phys. A 70, 231-233 (2000)
    73. Y. Zhao, Y. Li, I. Ahmad, D. McCartney, and Y. Zhu, Appl. Phys. Lett. 89, 133116 (2006)
    74. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, C.C. Xiong, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
    75. Z. W. Pan, S. Dai, and D. H. Lowndes, Solid State Commun. 134, 251 (2005)
    76. Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000)
    77. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
    78. C. Klinke, J. Hannon, L. Gignac, K. Reuter, and P. Avouris, Phys. Chem. B (2005) 109, 17787-17790
    79. A.C. Dillon, A.H. Mahn, R. Deshpande, J.L. Alleman, J.L. Blackburn, P.A. Parillia, M.J. Heben, C. Engtrakul, K.E.H. Gilbert, K.M. Jones, R. To, S-H. Lee, J.H. Lehman, Thin Solid Film 501 (2006) 216-220
    80. H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
    81. H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
    82. H. Choi, Y. Jung, and D. Kim, J. Am. Soc., 88[6] 1684- 1686 (2005)
    83. J.R. Heath, F.K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
    84. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, and D. Zhao, Adv. Mater. 15, 1370 (2003)
    85. T.A. Crowley, K.H. Ziegler, D.M. Lyons, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, Chem. Mater. 15, 3518 (2003)
    86. Y. Wu, T. Livneh, Y.X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
    87. K.M. Ryan, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
    88. N.R.B. Coleman, K.M. Ryan, T.R. Spalding, J.D. Holmes, and M.A. Morris, Chem. Phys. Lett. 343, 1 (2001)
    89. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
    90. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
    91. 傅耀賢, “新穎奈米線棒低溫合成技術”, 化工資訊與商情, 第2期 (2003)
    92. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
    93. A. Govindaraj, F.L. Deepak, N.A. Gunari, C.N.R. Rao, Israel J. Chem. 41, 23 (2001)
    94. K. Zhu, H.He, S. Xie, X. Zhang, W. Zhou, S. Jin, B. Yue, Chem. Phys. Lett. 377 (2003) 317-321
    95. Z. Xiao, L. Zhang, X. Tain and X. Fang, Nanotechnology 16 (2005) 2647-2650
    96. Z. Gu, Y. Ma, W. Yang, G. Zhang and J. Yao, Chem. Commun. (2005), 3597-3599
    97. G. Gundiah, F.L. Deepak, A. Govindaraj, and C.N.R. Rao, Top. Catal. 24, 137 (2003)
    98. X.C. Wu, J.M. Hong, Z.J. Han, and Y.R. Tao, Chem. Phys. Lett. 373, 28 (2003)
    99. C.Y. Chen, C.I. Lin, and S.H. Chen, Br. Ceram. Trans. 99, 57 (2000)
    100. J.P. Murray, A. Steinfeld, and E.A. Fletcher, Energy 20, 695 (1995)
    101. M. Johnsson, Solid State Ionics 172, 365 (2004)
    102. C.N.R. Rao, G. Gundiah, F.L. Deepak, A. Govindaraj, and A.K. Cheetham, J. Mater. Chem. 14, 440 (2004)
    103. A. Alizadeh, E.T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
    104. S.H. Li, X.F. Zhu, Y.P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
    105. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
    106. Y.C. Lin and W.T. Lin, Nanotechnology 16, 1648 (2005)
    107. B.T. Park and K. Yong, Nanotechnology 15, S365 (2004)
    108. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
    109. C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
    110. R.S. Wagner, and W.C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
    111. R.S. Wagner, and W.C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
    112. R.S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
    113. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    114. K. Hong, W. Yiu, H. Wu, J. Gao, M. Xie, Nanotechnology 16 (2005) 1608-1611
    115. H. Qi, C. Wang, J. Liu, Adv. Mater. 15 (2003) 411-414
    116. M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
    117. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995)
    118. X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
    119. X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett. 3, 93 (2003)
    120. T. Hanrath and B.A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
    121. S.T. Lee, N. Wang, Y.F. Zhang, and Y.H. Tang, MRS Bull. 24, 36 (1999)
    122. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J. Mater. Res. 14, 4503 (1999)
    123. N. Wang, Y.H. Tang, Y.F. Zhang, C.S .Lee, and S.T. Lee, Phys. Rev. B 58, R16024 (1998)
    124. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
    125. J.Q. Hu, X.M. Meng, Y. Jiang, C.S. Lee, and S.T. Lee, Adv. Mater. 15, 70 (2003)
    126. T.S. Chu, R.Q. Zhang, and H.F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
    127. R.Q. Zhang, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 635 (2003)
    128. X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
    129. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 345, 377 (2001)
    130. H.Y. Peng, X.T. Zhou, N. Wang, Y.F. Zheng, L.S. Liao, W.S. Shi, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 27, 263 (2000)
    131. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Adv. Mater. 13, 591 (2001)
    132. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
    133. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
    134. J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 344, 97 (2001)
    135. Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
    136. 汪建民等人, “材料分析”, 中國材料科學學會 (1998)
    137. A. Hoel, L. Reyes, P. Heszler, V. Lantto, C. Granqvist, Curr. Appl. Phys. 4 (2004) 547
    138. C. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao, Appl Phys A, 85 (2006) 241-246
    139. J.D. Guo, M.S. Whittingham, Inter. J. Modern Phys. B 7 (1997).4145.
    140. R. Diehl, G. Brandt, E. Salje, Acta Cryst. B 34_1978).1105.
    141. P.A. Gillet, J.L. Fourquet, O. Bohnke, Mater. Res. Bull. 27 (1992).1145.
    142. F. Xu and Stephen D. Tse, Appl. Phys. Lett. 88 243115 (2006)
    143. Z. Liu, Y. Bsndo, C. Tang, Chem. Phys. Lett. 372 (2003) 179-182
    144. R. Delamare, M. Gillet, E. Gillet, P. Guraino, Surf. Sci. (2007)
    145. Y. Wu, Z. Xi, G. Zhang, J. Yu, D. Guo, J. Crys. Growth 292 (2006) 141-148
    146. X. Li, J.F. Liu, Y.d. Li, Inorg. CHem. (2003) 42, 921-924
    147. Y. Jin, Y. Zhu, R. Whitby, N. Yao, R. Ma, P. Watts, H. Kroto, D. Walton, J. Phys. Chem B (2004), 108, 15572-15577
    148. M. Gillet, R. Delamare, E. Gillet, J. Crystal Growth 279 (2005) 93-99
    149. G.A. Swift and R. Koc J. Mater. Sci. 36 (2001) 803
    150. S.S. Brenner and G.W. Sears, Acta Metallurgica 4 (1956) 268
    151. G. Jiang, H. Zhuang, J. Zhang, M. Ruan, W. Li, F. Wu, and B. Zhang, J. Mater. Sci. 35 (2000) 63
    152. Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, Chem. Mater. 14 (2002) 3564.
    153. Y. Baek and K. Yong, J. Phys. Chem. C 111 (2007) 1213
    154. D.S. Venables and M.E. Brown, Thermochim. Acta 282/283, 251 (1996)
    155. D.S. Venables and M.E. Brown, Thermochim. Acta 282/283, 265 (1996).
    156. W. Gruner, S. Stolle, and K. Wetzig, Int. J. Refr. Metals Hard Mater. 18, 137 (2000).
    157. M. Zacharias and P.M.Fauchet, J. Non-Cryst. Solids 227, 1058 (1998)
    158. X.C. Wu, W.H. Song, B. Zhao, Y.P. Sun, and J.J. Du, Chem. Phys. Lett. 349, 210 (2001)
    159. M. Zheng, L. Zhang, X. Zhang, J. Zhang, and G. Li, Chem. Phys. Lett. 334, 298 (2001)
    160. D.C. Bell, Y. Wu, C.J. Barrelet, S. Gradecak, J. Xiang, B.P. Timko, and C.M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
    161. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    162. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995)
    163. X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett. 3, 93 (2003)
    164. S. Sun, G. Meng, M. Zhang, Y. Hao, X. Zhang, and L. Zhang, J. Phys. Chem. B 107,13029 (2003)
    165. C.N.R Rao, Transition Metal Oxides
    166. Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles

    下載圖示 校內:2008-07-12公開
    校外:2008-07-12公開
    QR CODE