| 研究生: |
謝文元 Hsieh, Wen-yuan |
|---|---|
| 論文名稱: |
熱碳還原法生長WO3奈米線及Ge-Si1-xGexOy核殼奈米線 Growth of WO3 nanowires and Ge-Si1-xGexOy core-shell nanowires via carbothermal reduction |
| 指導教授: |
林文台
Lin, Wen-tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 奈米線 、鍺 、氧化鎢 、熱碳還原法 |
| 外文關鍵詞: | WO3, Ge, carbothermal reduction, nanowires |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以熱碳還原法在溫度900°C-1100°C及Ar流量25-400sccm下,GeO2加入WO3粉末生長WO3 nanowires(以下簡稱NWs)及Ge-Si1-xGexOy核-殼奈米線(以下以Ge-SiGeO NWs稱之)的效應。在900°C時,由熱蒸鍍或熱碳還原WO3粉末並無觀察到有奈米線生成,加入了GeO2才使得WO3 NWs 生長。 WO3奈米線生長依觀察是以氣-固機制(V-S process)成長,GeO2於其中扮演了氧化劑的角色。在此研究不同溫度下,熱碳還原法在WO3/GeO?2/C的混合粉末下生長不同種類奈米線的機制。在900°C,Ar氣氛通入1-5%氧氣的環境下會使GeO2 NWs 及WO3-GeO2 core-shell NWs 生長。而愈多的氧氣通入會抑制奈米線的成長,因為會有許多碳粉被消耗掉。 而在1050°C-1100°C下,也觀察到Ge-SiGeO NWs遵循V-S機制生長。另外,將會個別討論WO3、GeO2與Ge-SiGeO NWs的生長機制。
Effects of adding GeO2 to WO3 powders on enhancing the growth of WO3 nanowires (NWs) and Ge-Si1-xGexOy core-shell NWs ( Ge-SiGeO NWs) via the carbothermal reduction process in Ar at a flow rate of 25-400 sccm at a temperature of 900-1100°C were studied. Upon the thermal evaporation or carbothermal reduction of WO3 powders at 900°C no NWs were grown. The growth of WO3 NWs follows the vapor-solid (VS) process, where GeO2 powders act as an oxidizer. Introducing 1-5% O2 into flowing Ar enhanced the growth of GeO2 NWs and WO3-GeO2 core-shell NWs at 900°C. More O2 suppressed the growth of NWs because of the exhaustion of much graphite powders. At 1050-1100°C the growth of Ge-SiGeO NWs following the VS process were observed. In addition, the growth mechanisms of WO3, GeO2, and Ge-SiGeO NWs are discussed, respectively.
1. R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2. Sumio Iijima, Nature 354(7), 56, 1991.00001
3. 馬振基主編, “奈米科技原理與應用”, 全華科技, 92年1月.
4. Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Adv. Funct. Mater. 13(1), 9, (2003).
5. 郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.3.
6. S. Iijima, Nature 354, 56 (1991)
7. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995)
8. M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Romas, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996)
9. K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
10. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J.M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
11. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
12. W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
13. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, C.C. Xiong, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
14. H. Dai, E.W. Wang, Y.Z. Lu, S.S. Fang, and C.M. Lieber, Nature 375, 769 (1995)
15. L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
16. Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
17. Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
18. Y. Saito, S. Uemura, Carbon 38, 169 (2000)
19. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, and H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
20. S.M. Lee, K.S. Park, Y.C. Chai, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, and Y.H. Lee, Synth. Met. 113, 209 (2000)
21. R.T. Yang, Carbon 38, 623 (2000)
22. J. Hu, T.W. Odom, and C.M. Lieber, and Acc. Chem. Res. 32, 435 (1999)
23. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
24. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384, 147 (1996)
25. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
26. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L Cheung, and C.M. Lieber, Science 289, 94 (2000)
27. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
28. J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
29. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)
30. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
31. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001)
32. Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
33. A.P. Alivisatos, Science 271, 933 (1996)
34. F. Marlow, M.D. M McGehee, D. Zhao, B.F. Chmelka, and G.D. Stucky, Adv. Mater. 11, 632 (1999)
35. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
36. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).
37. G. Fang, Z. Liu, Y. Wang, H. Liuy, and K. Yao, J. Phys. D: Appl. Phys. 33, 2018 (2000).
38. K. Bange, Sol. Energy Mater. Sol. Cells 58 (1999)
39. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, J. Am. Chem. Soc. 123, 10639 (2001)
40. S. Sawada, J. Phys. Soc. Jpn. 11, 1237 (1956).
41. S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, and A. M. Al-Shukri, Sol. Energy Mater. Sol. Cells 71, 313 (2002).
42. Zhu, Y. Q.; Hu, W.; Hsu, W. K.; Terrones, M.; Grobert, N.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Terrones, H. Chem. Phys.Lett. (1999), 309, 327.
43. A.G. Cullis, L.T. Canham, and P.D.J. Calcott, J. Appl. Phys. 82, 909 (1997)
44. J.R. Heath, F.K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
45. T. Hanrath and B.A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
46. D. Wang, Y.L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
47. J.Q. Hu, X.M. Meng, Y. Jiang, C.S. Lee, and S.T. Lee, Adv. Mater. 15, 70 (2003)
48. X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
49. J. Hu, Y. Jiang, X. Meng, C.S. Lee, and S.T. Lee, Small 1, 429 (2005)
50. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
51. G. Gu, M. Burghard, G.T. Kim, G.S. Dusberg, P.W. Chiu, V. Krstic, S. Roth, and W.Q. Han, Appl. Phys. Lett. 90, 5747 (2001)
52. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
53. Y. Huang, J. Lin, J. Zhang, X.X. Ding, S.R. Qi, and C.C. Tang, Nanotechnology 16, 1369 (2005)
54. C. Y. KO, W. T. Lin, Nanotechnology, 17(17):4464-4468 (2006)
55. T. Guo,P. Nikolaev,A. Thess,D.T. Colbert,R.E. Smalley,Chem. Phys. Lett. 243, 49 (1995)
56. Jing Goo Lee and Hirotaro Mori, Appl. Phys. Lett. 87, 213104 (2005)
57. D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu and J. B. Xu, J. Raman Spec. (2007), 38, 176-180
58. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
59. Y.H. Tang, Y.F. Zhang, N. Wang, I. Bello, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
60. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001)
61. B.D. Yao, Y.F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
62. Y.B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
63. Zhu, Y. Q.; Hu, W.; Hsu, W. K.; Terrones, M.; Grobert, N.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Terrones, H. Chem. Phys.Lett. (1999), 309, 327.
64. G. Gu, B. Zheng, W. Q. Han, S. Roth, J. Liu, Nano Lett. 2002, 2, 849–851
65. Y. B. Li, Y Bando, D. Golberg, K. Kurashima, Chem. Phys. Lett. 367 (2003) 214-218
66. J. Liu, Y. Zhao and Z. Zhang, J. Phys. Cond. Mater 15 (2003) L453-L461
67. J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, Adv. Mater. (Weinheim, Ger.) 17, 2107 (2005).
68. J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. S. Yang, and Z. L. Wang, Appl. Phys. Lett. 87, 223108 (2005).
69. C. C. Liao, F. R. Chen, J. J. Kai, Sol. Energ. Mat. Sol. Cell 90 (2006) 1147-1155
70. K. Hong, M. Xie and H. Wu, Nanotechnology 17 (2006) 4830-4833
71. Y. Baek, Y. Song, and K. Yong, ADV. MATER. (2006), 18, 3105-3110
72. W. Hu, Y. Zhu, W. Hsu, B. Chang, M. Terrones, N. Grobert, H. Terrones, J. Hare, H. Kroto, D. Walton, Appl. Phys. A 70, 231-233 (2000)
73. Y. Zhao, Y. Li, I. Ahmad, D. McCartney, and Y. Zhu, Appl. Phys. Lett. 89, 133116 (2006)
74. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, C.C. Xiong, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
75. Z. W. Pan, S. Dai, and D. H. Lowndes, Solid State Commun. 134, 251 (2005)
76. Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000)
77. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
78. C. Klinke, J. Hannon, L. Gignac, K. Reuter, and P. Avouris, Phys. Chem. B (2005) 109, 17787-17790
79. A.C. Dillon, A.H. Mahn, R. Deshpande, J.L. Alleman, J.L. Blackburn, P.A. Parillia, M.J. Heben, C. Engtrakul, K.E.H. Gilbert, K.M. Jones, R. To, S-H. Lee, J.H. Lehman, Thin Solid Film 501 (2006) 216-220
80. H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
81. H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
82. H. Choi, Y. Jung, and D. Kim, J. Am. Soc., 88[6] 1684- 1686 (2005)
83. J.R. Heath, F.K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
84. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, and D. Zhao, Adv. Mater. 15, 1370 (2003)
85. T.A. Crowley, K.H. Ziegler, D.M. Lyons, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, Chem. Mater. 15, 3518 (2003)
86. Y. Wu, T. Livneh, Y.X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
87. K.M. Ryan, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
88. N.R.B. Coleman, K.M. Ryan, T.R. Spalding, J.D. Holmes, and M.A. Morris, Chem. Phys. Lett. 343, 1 (2001)
89. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
90. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
91. 傅耀賢, “新穎奈米線棒低溫合成技術”, 化工資訊與商情, 第2期 (2003)
92. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
93. A. Govindaraj, F.L. Deepak, N.A. Gunari, C.N.R. Rao, Israel J. Chem. 41, 23 (2001)
94. K. Zhu, H.He, S. Xie, X. Zhang, W. Zhou, S. Jin, B. Yue, Chem. Phys. Lett. 377 (2003) 317-321
95. Z. Xiao, L. Zhang, X. Tain and X. Fang, Nanotechnology 16 (2005) 2647-2650
96. Z. Gu, Y. Ma, W. Yang, G. Zhang and J. Yao, Chem. Commun. (2005), 3597-3599
97. G. Gundiah, F.L. Deepak, A. Govindaraj, and C.N.R. Rao, Top. Catal. 24, 137 (2003)
98. X.C. Wu, J.M. Hong, Z.J. Han, and Y.R. Tao, Chem. Phys. Lett. 373, 28 (2003)
99. C.Y. Chen, C.I. Lin, and S.H. Chen, Br. Ceram. Trans. 99, 57 (2000)
100. J.P. Murray, A. Steinfeld, and E.A. Fletcher, Energy 20, 695 (1995)
101. M. Johnsson, Solid State Ionics 172, 365 (2004)
102. C.N.R. Rao, G. Gundiah, F.L. Deepak, A. Govindaraj, and A.K. Cheetham, J. Mater. Chem. 14, 440 (2004)
103. A. Alizadeh, E.T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
104. S.H. Li, X.F. Zhu, Y.P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
105. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
106. Y.C. Lin and W.T. Lin, Nanotechnology 16, 1648 (2005)
107. B.T. Park and K. Yong, Nanotechnology 15, S365 (2004)
108. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
109. C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
110. R.S. Wagner, and W.C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
111. R.S. Wagner, and W.C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
112. R.S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
113. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
114. K. Hong, W. Yiu, H. Wu, J. Gao, M. Xie, Nanotechnology 16 (2005) 1608-1611
115. H. Qi, C. Wang, J. Liu, Adv. Mater. 15 (2003) 411-414
116. M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
117. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995)
118. X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
119. X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett. 3, 93 (2003)
120. T. Hanrath and B.A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
121. S.T. Lee, N. Wang, Y.F. Zhang, and Y.H. Tang, MRS Bull. 24, 36 (1999)
122. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J. Mater. Res. 14, 4503 (1999)
123. N. Wang, Y.H. Tang, Y.F. Zhang, C.S .Lee, and S.T. Lee, Phys. Rev. B 58, R16024 (1998)
124. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
125. J.Q. Hu, X.M. Meng, Y. Jiang, C.S. Lee, and S.T. Lee, Adv. Mater. 15, 70 (2003)
126. T.S. Chu, R.Q. Zhang, and H.F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
127. R.Q. Zhang, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 635 (2003)
128. X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
129. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 345, 377 (2001)
130. H.Y. Peng, X.T. Zhou, N. Wang, Y.F. Zheng, L.S. Liao, W.S. Shi, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 27, 263 (2000)
131. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Adv. Mater. 13, 591 (2001)
132. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
133. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
134. J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 344, 97 (2001)
135. Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
136. 汪建民等人, “材料分析”, 中國材料科學學會 (1998)
137. A. Hoel, L. Reyes, P. Heszler, V. Lantto, C. Granqvist, Curr. Appl. Phys. 4 (2004) 547
138. C. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao, Appl Phys A, 85 (2006) 241-246
139. J.D. Guo, M.S. Whittingham, Inter. J. Modern Phys. B 7 (1997).4145.
140. R. Diehl, G. Brandt, E. Salje, Acta Cryst. B 34_1978).1105.
141. P.A. Gillet, J.L. Fourquet, O. Bohnke, Mater. Res. Bull. 27 (1992).1145.
142. F. Xu and Stephen D. Tse, Appl. Phys. Lett. 88 243115 (2006)
143. Z. Liu, Y. Bsndo, C. Tang, Chem. Phys. Lett. 372 (2003) 179-182
144. R. Delamare, M. Gillet, E. Gillet, P. Guraino, Surf. Sci. (2007)
145. Y. Wu, Z. Xi, G. Zhang, J. Yu, D. Guo, J. Crys. Growth 292 (2006) 141-148
146. X. Li, J.F. Liu, Y.d. Li, Inorg. CHem. (2003) 42, 921-924
147. Y. Jin, Y. Zhu, R. Whitby, N. Yao, R. Ma, P. Watts, H. Kroto, D. Walton, J. Phys. Chem B (2004), 108, 15572-15577
148. M. Gillet, R. Delamare, E. Gillet, J. Crystal Growth 279 (2005) 93-99
149. G.A. Swift and R. Koc J. Mater. Sci. 36 (2001) 803
150. S.S. Brenner and G.W. Sears, Acta Metallurgica 4 (1956) 268
151. G. Jiang, H. Zhuang, J. Zhang, M. Ruan, W. Li, F. Wu, and B. Zhang, J. Mater. Sci. 35 (2000) 63
152. Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, Chem. Mater. 14 (2002) 3564.
153. Y. Baek and K. Yong, J. Phys. Chem. C 111 (2007) 1213
154. D.S. Venables and M.E. Brown, Thermochim. Acta 282/283, 251 (1996)
155. D.S. Venables and M.E. Brown, Thermochim. Acta 282/283, 265 (1996).
156. W. Gruner, S. Stolle, and K. Wetzig, Int. J. Refr. Metals Hard Mater. 18, 137 (2000).
157. M. Zacharias and P.M.Fauchet, J. Non-Cryst. Solids 227, 1058 (1998)
158. X.C. Wu, W.H. Song, B. Zhao, Y.P. Sun, and J.J. Du, Chem. Phys. Lett. 349, 210 (2001)
159. M. Zheng, L. Zhang, X. Zhang, J. Zhang, and G. Li, Chem. Phys. Lett. 334, 298 (2001)
160. D.C. Bell, Y. Wu, C.J. Barrelet, S. Gradecak, J. Xiang, B.P. Timko, and C.M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
161. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
162. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995)
163. X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett. 3, 93 (2003)
164. S. Sun, G. Meng, M. Zhang, Y. Hao, X. Zhang, and L. Zhang, J. Phys. Chem. B 107,13029 (2003)
165. C.N.R Rao, Transition Metal Oxides
166. Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles