| 研究生: |
李宥昀 Li, You-Yun |
|---|---|
| 論文名稱: |
探討摻鐵鈮酸鋰的缺陷結構與物理性質 Investigation of Defect Structure and Physical Properties of Fe-Doped LiNbO3 |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 摻鐵鈮酸鋰 、缺陷結構 、Rietveld結構精算 、鐵磁性 |
| 外文關鍵詞: | Fe-doped LiNbO3, Defect structure, Rietveld refinement, Ferromagnetism |
| 相關次數: | 點閱:131 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用燃燒法其製程快速的特點來製備具有鈣鈦礦ABO3結構的非化學劑量比LiNbO3及摻雜Fe之LiNbO3¬粉末,對其表面形貌、缺陷結構變化與鐵磁性等物理性質進行探討,做為多鐵材料的初步開發研究。
本研究利用DSC測得鐵電居理溫度,並透過鐵電居理溫度與Li濃度的關係式來獲得[Li]/([Li]+[Nb])的摩爾數比,其比值為46.55及49.24%。發現燃燒法製程的晶體缺陷結構較多,導致LiNbO3有相分離的現象。摻雜Fe之LiNbO3其摻雜濃度在0.56~3.314 mol%,但隨著摻雜Fe濃度變高,摩爾數比值為46.55%的相會消失,顯示摻雜鐵於LiNbO3¬晶體中會使缺陷較多的相消失進而穩定晶體結構。在表面型貌方面,粉末的晶體尺寸則約為100~200 nm,並不隨Fe的摻雜而有明顯的變化。
本研究先利用不同空缺模型透過Rietveld方法來精算非化學劑量比的LiNbO3結構,發現混合空缺模型及Li空缺模型較合適解釋其缺陷結構,而Nb空缺模型則因為過多的反位鈮(Nb*)存在A位的假設導致結構不合理的扭曲。
同時我們也利用XPS、UV-Vis及Raman光譜分析摻雜Fe之LiNbO3,得知Fe以二價及三價混合進入LiNbO3結構中,取代A位的Li,且無電荷補償現象。在A位中依舊留有Nb*及其空缺,但B位的Nb有位移現象,推估是Nb*被推回B位中。
接著我們再進一步利用混合空缺模型及Li空缺模型合併上述觀察的假設來分析摻雜Fe之LiNbO3晶格結構。其中,混合空缺模型合併部份Nb*被推回B位的假設下的模擬結果,是當中最合適解釋摻雜Fe之 LiNbO3缺陷結構的推論。我們可以發現隨著摻雜Fe濃度越高,O-Nb-O和O-Li/Fe-O鍵角改變而使得Li/Fe-Nb鍵長縮短,LiO6與NbO6兩架構更靠近,不含陽離子的氧八面體(ʋ O6)架構在xy平面上會變細長緊縮,也使Li/Fe的原子位置沿著c軸上升。但同時,隨著摻雜Fe濃度越高,Nb*被推回B位也越多,Nb空缺(VNb)消失越多,則會減緩晶格扭曲,以上因素互相競爭,導致晶格常數變化並不明顯。
本研究發現摻雜Fe之LiNbO3晶體皆具有室溫軟鐵磁性。當摻雜濃度增加至1.3 mol%以上,飽和磁化率呈現非線性的增加,最大的飽和磁化率為1.18 emu/g。另外,矯頑磁場也有非線性增加,最高值為93 Oe,但在3.314 mol%有些微下降。推估是因為Nb*被推回B位越多,Nb空缺(VNb)消失越多,而使Fe-Nb之間的距離縮短,導致整體Fe-Nb自旋耦合將更為強烈,使飽和磁化率有非線性的增加,然而當Fe-Nb太靠近時,矯頑磁場則會些微下降。
In this work, the defect structure and the characterization of the congruent LiNbO3 and Fe-doped LiNbO3 were investigated for the discovery of multiferroic materials.
The nanocrystal size is 100~200 nm. The molar ratio of [Li]/([Li]+[Nb]) determined by Curie temperature via DSC is about 46.55 and 49.24% and the doping concentration of Fe is 0.56~3.314 mol %.
Li vacancy model and the mixed-vacancy model applied in Rietveld refinement of the congruent LiNbO3 lead to reasonable fitting results. Coexistence of Fe+2, Fe+3 and the anti-site Nb (Nb*) in Fe-doped LiNbO3 was probed by XPS and UV-Vis spectra. Raman spectra exhibit the displacement along the c-axis of Li and Nb, and the deformation of the NbO6 framework as Fe is doped into LiNbO3. Rietveld fitting results of Fe-doped LiNbO3 showed that doping Fe could cause the lattice thinner and longer and the assumption of the mixed-vacancy model with the replacement of Li by Fe+2/Fe+3 and then pushing Nb* back to Nb site is more appropriate than the other to describe the structure.
Fe-doped LiNbO3 exhibits room-temperature soft ferromagnetism. The highest coercivity (93 Oe) was obtained as doping Fe is up to 1.856 mol%, and the saturation magnetization increased to 1.18 emu/g as doping Fe is up to 3.314 mol%. This nonlinear increase could be inferred as the increase of Nb* pushing back to Nb site, which resulted in a shorter bonding distance of Fe-Nb and the stronger spin coupling of Fe-Nb in the whole crystal.
1. Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange." Physical Review B 1989, 39, pp. 4828-4830.
2. Parkin, S.S.; More, N.; Roche, K.P. "Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr." Phys Rev Lett 1990, 64, pp. 2304-2307.
3. 張慶瑞. "巨磁阻物理之歷史與展望 " 物理雙月刊 2008年四月, 32, pp. 110-115.
4. Miyazaki, T.; Tezuka, N. "Giant magnetic tunneling effect in Fe/Al2O3/Fe junction." Journal of Magnetism and Magnetic Materials 1995, 139, pp. L231-L234.
5. Cheong, S.W.; Mostovoy, M. "Multiferroics: a magnetic twist for ferroelectricity." Nat Mater 2007, 6, pp. 13-20.
6. Eerenstein, W.; Mathur, N.D.; Scott, J.F. "Multiferroic and magnetoelectric materials." Nature 2006, 442, pp. 759-765.
7. Ramesh, R.; Spaldin, N.A. "Multiferroics: progress and prospects in thin films." Nat Mater 2007, 6, pp. 21-29.
8. Khomskii, D.I. "Multiferroics: Different ways to combine magnetism and ferroelectricity." Journal of Magnetism and Magnetic Materials 2006, 306, pp. 1-8.
9. Zhao, T.; Scholl, A.; Zavaliche, F.; Lee, K.; Barry, M.; Doran, A.; Cruz, M.P.; Chu, Y.H.; Ederer, C.; Spaldin, N.A.; Das, R.R.; Kim, D.M.; Baek, S.H.; Eom, C.B.; Ramesh, R. "Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature." Nature materials 2006, 5, pp. 823-829.
10. Catalan, G.; Scott, J.F. "Physics and Applications of Bismuth Ferrite." Advanced Materials 2009, 21, pp. 2463-2485.
11. Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. "Magnetic control of ferroelectric polarization." Nature 2003, 426, pp. 55-58.
12. Byer, R.L.; Young, J.F.; Feigelson, R.S. "Growth of High‐Quality LiNbO3 Crystals from the Congruent Melt." Journal of Applied Physics 1970, 41, pp. 2320-2325.
13. Schirmer, O.F.; Imlau, M.; Merschjann, C.; Schoke, B. "Electron small polarons and bipolarons in LiNbO3." Journal of Physics: Condensed Matter 2009, 21, pp. 123201.
14. Sanna, S.; Schmidt, W.G. "Ferroelectric phase transition in LiNbO3: Insights from molecular dynamics." IEEE Trans Ultrason Ferroelectr Freq Control 2012, 59, pp. 1925-1928.
15. Bhatt, S.; Semwal, B. "Dielectric and ultrasonic properties of LiNbO3 ceramics." Solid State Ionics 1987, 23, pp. 77-80.
16. Lanfredi, S.; Rodrigues, A.C.M. "Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3." Journal of Applied Physics 1999, 86, pp. 2215-2219.
17. Lee, M. "Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz." Applied Physics Letters 2001, 79, pp. 1342-1344.
18. El Bachiri, A.; Bennani, F.; Bousselamti, M. "Dielectric and electrical properties of LiNbO3 ceramics." Journal of Asian Ceramic Societies 2016, 4, pp. 46-54.
19. Zuo, W.; Zuo, R.; Zhao, W. "Phase transition behavior and electrical properties of lead-free (Bi0.5K0.5)TiO3–LiNbO3 relaxor ferroelectric ceramics." Ceramics International 2013, 39, pp. 725-730.
20. Kim, J.S.; Hussain, A.; Kim, M.-H.; Song, T.K.; Chung, S.T.; Chung, C.H.; Lee, H.S. "Dielectric and conduction behaviors of lead-free LiNbO3-modified Bi0.5Na0.5TiO3 ceramics." Journal of the Korean Physical Society 2012, 61, pp. 951-955.
21. Guo, Y.; Kakimoto, K.-i.; Ohsato, H. "Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics." Applied Physics Letters 2004, 85, pp. 4121-4123.
22. Edon, V.; Rèmiens, D.; Saada, S. "Structural, electrical and piezoelectric properties of LiNbO3 thin films for surface acoustic wave resonators applications." Applied Surface Science 2009, 256, pp. 1455-1460.
23. Díaz-Moreno, C.; Farias, R.; Hurtado-Macias, A.; Elizalde-Galindo, J.; Hernandez-Paz, J. "Multiferroic response of nanocrystalline lithium niobate." Journal of Applied Physics 2012, 111, pp. 07D907.
24. Díaz-Moreno, C.; Lopez, J.; González-Hernández, J.; Escudero, R.; Heiras, J.L.; Yacamán, M.J.; Mendez-Nonell, J.; Hurtado-Macias, A. "Magnetocapacitance effect in ferromagnetic LiNbO3 nanoparticles." Journal of Magnetism and Magnetic Materials 2016, 407, pp. 291-298.
25. Díaz-Moreno, C.A.; Farías-Mancilla, R.; Matutes-Aquino, J.A.; Elizalde-Galindo, J.; Espinosa-Magaña, F.; González-Hernández, J.; Hurtado-Macías, A. "Magnetic behavior in LiNbO3 nanocrystallites caused by oxygen vacancies." Journal of Magnetism and Magnetic Materials 2014, 356, pp. 82-86.
26. Manikandan, M.; Saravana Kumar, K.; Aparnadevi, N.; Praveen Shanker, N.; Venkateswaran, C. "Multiferroicity in polar phase LiNbO3 at room temperature." Journal of Magnetism and Magnetic Materials 2015, 391, pp. 156-160.
27. Bordui, P.F.; Norwood, R.G.; Jundt, D.H.; Fejer, M.M. "Preparation and Characterization of Off-Congruent Lithium-Niobate Crystals." Journal of Applied Physics 1992, 71, pp. 875-879.
28. Svaasand, L.O.; Eriksrud, M.; Nakken, G.; Grande, A.P. "Solid-solution range of LiNbO3." Journal of Crystal Growth 1974, 22, pp. 230-232.
29. Yu, J.; Liu, X. "Hydrothermal synthesis and characterization of LiNbO3 crystal." Materials Letters 2007, 61, pp. 355-358.
30. Lin, Y.; Yang, H.; Zhu, J.; Wang, F.; Luo, H. "Low-Temperature Rapid Synthesis of LiNbO3 Powder by Molten Salt Methods." Materials and Manufacturing Processes 2008, 23, pp. 791-795.
31. Knabe, B.; Schütze, D.; Jungk, T.; Svete, M.; Assenmacher, W.; Mader, W.; Buse, K. "Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method." physica status solidi (a) 2011, 208, pp. 857-862.
32. Camargo, E.R.; Kakihana, M. "Chemical Synthesis of Lithium Niobate Powders (LiNbO3) Prepared from Water-Solubledl-Malic Acid Complexes." Chemistry of Materials 2001, 13, pp. 1905-1909.
33. Kuo, C.L.; Chang, Y.S.; Chang, Y.H.; Hwang, W.S. "Synthesis of nanocrystalline lithium niobate powders via a fast chemical route." Ceramics International 2011, 37, pp. 951-955.
34. Iyi, N.; Kitamura, K.; Izumi, F.; Yamamoto, J.K.; Hayashi, T.; Asano, H.; Kimura, S. "Comparative study of defect structures in lithium niobate with different compositions." Journal of Solid State Chemistry 1992, 101, pp. 340-352.
35. Abrahams, S.C.; Marsh, P. "Defect structure dependence on composition in lithium niobate." Acta Crystallographica Section B Structural Science 1986, 42, pp. 61-68.
36. Tsai, P.C.; Sun, M.L.; Chia, C.T.; Lu, H.F.; Lin, S.H.; Hu, M.L.; Lee, J.F. "Defect structure of highly Zn-doped LiNbO3 single crystal revealed by extended x-ray absorption spectra." Applied Physics Letters 2008, 92, pp. 161902.
37. Abdi, F.; Fontana, M.D.; Aillerie, M.; Bourson, P. "Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties." Applied Physics A: Materials Science & Processing 2006, 83, pp. 427-434.
38. Li, Y.; Schmidt, W.G.; Sanna, S. "Defect complexes in congruent LiNbO3 and their optical signatures." Physical Review B 2015, 91, pp. 1741061-1741069.
39. Iyi, N.; Kitamura, K.; Yajima, Y.; Kimura, S.; Furukawa, Y.; Sato, M. "Defect Structure Model of MgO-Doped LiNbO3." Journal of Solid State Chemistry 1995, 118, pp. 148-152.
40. Aillerie, M.; Bourson, P.; Mostefa, M.; Abdi, F.; Fontana, M.D. "Photorefractive damage in congruent LiNbO3. Part II. magnesium doped lithium niobate crystals." Journal of Physics: Conference Series 2013, 416, pp. 0120021-0120027.
41. Aillerie, M.; Bourson, P.; Mostefa, M.; Abdi, F.; Fontana, M.D. "Photorefractive damage in congruent LiNbO3. Part I. zinc doped lithium niobate crystals." Journal of Physics: Conference Series 2013, 416, pp. 0120011-01200110.
42. Kong, Y.; Liu, S.; Xu, J. "Recent advances in the photorefraction of doped lithium niobate crystals." Materials 2012, 5, pp. 1954-1971.
43. Volk, T.; Wöhlecke, M., Lithium niobate: Defects, Photorefraction and Ferroelectric Switching; Springer-Verlag Berlin Heidelberg: Berlin, Heidelberg, 2009.
44. Lorenzo, A.; Jaffrezic, H.; Roux, B.; Boulon, G.; García‐Solé, J. "Lattice location of rare‐earth ions in LiNbO3." Applied Physics Letters 1995, 67, pp. 3735-3737.
45. Zeng, F.; Sheng, P.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C.; Zou, Y.; Huang, Y.Y.; Jiang, Z.; Guo, D. "Electronic structure and magnetism of Fe-doped LiNbO3." Materials Chemistry and Physics 2012, 136, pp. 783-788.
46. Wu, F.; Luo, S.; Wang, J.; Sun, X. "Defect structure and optical damage resistance of In:Fe:Cu:LiNbO3 crystals with various [Li]/[Nb] ratios." Crystal Research and Technology 2011, 46, pp. 183-186.
47. Knabe, B.; Schutze, D.; Jungk, T.; Svete, M.; Assenmacher, W.; Mader, W.; Buse, K. "Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method." physica status solidi (a) 2011, 208, pp. 857-862.
48. Song, C.; Wang, C.; Liu, X.; Zeng, F.; Pan, F. "Room Temperature Ferromagnetism in Cobalt-Doped LiNbO3 Single Crystalline Films." Crystal Growth & Design 2009, 9, pp. 1235-1239.
49. Paul, M.; Tabuchi, M.; West, A.R. "Defect Structure of Ni, Co-Doped LiNbO3 and LiTaO3." Chemistry of Materials 1997, 9, pp. 3206-3214.
50. Bodziony, T.; Kaczmarek, S.M.; Rudowicz, C. "Temperature dependence of the EPR lines in weakly doped LiNbO3:Yb—possible evidence of Yb3+ ion pairs formation." Physica B: Condensed Matter 2008, 403, pp. 207-218.
51. Aruna, S.T.; Mukasyan, A.S. "Combustion synthesis and nanomaterials." Current Opinion in Solid State and Materials Science 2008, 12, pp. 44-50.
52. Hwang, C.C.; Wu, T.Y. "Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants - influence of reactant composition." Journal of Materials Science 2004, 39, pp. 6111-6115.
53. Liu, M.; Xue, D. "Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites." Journal of Alloys and Compounds 2007, 427, pp. 256-259.
54. Mukasyan, A.S.; Epstein, P.; Dinka, P. "Solution combustion synthesis of nanomaterials." Proceedings of the Combustion Institute 2007, 31, pp. 1789-1795.
55. Kuo, C.L.; Chen, G.J.; Chang, Y.S.; Fu, J.-X.; Chang, Y.H.; Hwang, W.S. "Thermal behavior of the nonstoichiometric lithium niobate powders synthesized via a combustion method." Ceramics International 2012, 38, pp. 3729-3733.
56. Kuo, C.L.; Chen, G.J.; Hsi, C.-S.; Wang, J.W.; Chang, Y.S.; Li, Y.Y.; Hwang, W.S. "Raman spectra and dielectric properties of the nanocrystalline Li0.43Nb0.57O3+δ." Ceramics International 2014, 40, pp. 4639-4642.
57. Lerner, P.; Legras, C.; Dumas, J.P. "Stoechiométrie des monocristaux de métaniobate de lithium." Journal of Crystal Growth 1968, 3-4, pp. 231-235.
58. Donnerberg, H.; Tomlinson, S.M.; Catlow, C.R.; Schirmer, O.F. "Computer-simulation studies of intrinsic defects in LiNbO3 crystals." Phys Rev B Condens Matter 1989, 40, pp. 11909-11916.
59. Blümel, J.; Born, E.; Metzger, T. "Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate." Journal of Physics and Chemistry of Solids 1994, 55, pp. 589-593.
60. Li, Y.; Schmidt, W.G.; Sanna, S. "Intrinsic LiNbO3 point defects from hybrid density functional calculations." Physical Review B 2014, 89, pp. 0941111-0941118.
61. Zhao, M.G.; Chiu, M. "Substitution site of the Fe3+ impurity in crystalline LiNbO3." Physical Review B 1994, 49, pp. 12556-12558.
62. Peterson, G.E.; Glass, A.M.; Negran, T.J. "Control of the susceptibility of lithium niobate to laser‐induced refractive index changes." Applied Physics Letters 1971, 19, pp. 130-132.
63. Bush, T.S.; Catlow, C.R.A.; Chadwick, A.V.; Cole, M.; Geatches, R.M.; Greaves, G.N.; Tomlinson, S.M. "Studies of cation dopant sites in metal oxides by EXAFS and computer-simulation techniques." Journal of Materials Chemistry 1992, 2, pp. 309-316.
64. Olimov, K.; Falk, M.; Buse, K.; Woike, T.; Hormes, J.; Modrow, H. "X-ray absorption near edge spectroscopy investigations of valency and lattice occupation site of Fe in highly iron-doped lithium niobate crystals." Journal of Physics: Condensed Matter 2006, 18, pp. 5135-5146.
65. Vitova, T.; Hormes, J.; Falk, M.; Buse, K. "Site-selective investigation of site symmetry and site occupation of iron in Fe-doped lithium niobate crystals." Journal of Applied Physics 2009, 105, pp. 0134241-0135246.
66. Gog, T.; Schotters, P.; Falta, J.; Materlik, G.; Grodzicki, M. "The lattice position of Fe in Fe-doped LiNbO3." Journal of Physics: Condensed Matter 1995, 7, pp. 6971-6980.
67. Mignoni, S.; Fontana, M.D.; Bazzan, M.; Ciampolillo, M.V.; Zaltron, A.M.; Argiolas, N.; Sada, C. "Micro-Raman analysis of Fe-diffused lithium niobate waveguides." Applied Physics B: Lasers and Optics 2010, 101, pp. 541-546.
68. Clark, M.G.; DiSalvo, F.J.; Glass, A.M.; Peterson, G.E. "Electronic structure and optical index damage of iron‐doped lithium niobate." Journal of Chemical Physics 1973, 59, pp. 6209-6219.
69. Schirmer, O.F.; Imlau, M.; Merschjann, C. "Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation." Physical Review B 2011, 83, pp. 1651061-16510613.
70. Ciampolillo, M.V.; Zaltron, A.; Bazzan, M.; Argiolas, N.; Sada, C.; Bianconi, M. "Lithium niobate crystals doped with iron by thermal diffusion: relation between lattice deformation and reduction degree." Journal of Applied Physics 2010, 107, pp. 084108.
71. Sanson, A.; Zaltron, A.; Argiolas, N.; Sada, C.; Bazzan, M.; Schmidt, W.G.; Sanna, S. "Polaronic deformation at the Fe2+/3+ impurity site in Fe:LiNbO3 crystals." Physical Review B 2015, 91, pp. 0941091-09410914.
72. Kurz, H.; Krätzia, E.; Keune, W.; Engelmann, H.; Gonser, U.; Dischler, B.; Räuber, A. "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods." Applied Physics 1977, 12, pp. 355-368.
73. Ciampolillo, M.V.; Zaltron, A.; Bazzan, M.; Argiolas, N.; Sada, C. "Quantification of iron (Fe) in lithium niobate by optical absorption." Applied Spectroscopy 2011, 65, pp. 216-220.
74. Shah, R.R.; Kim, D.M.; Rabson, T.A.; Tittel, F.K. "Characterization of iron‐doped lithium niobate for holographic storage applications." Journal of Applied Physics 1976, 47, pp. 5421-5431.
75. Fernandez-Ruiz, R.; Bermudez, V. "Determination of Li and Nb in congruent lithium niobate by ICP-MS." Chemistry of Materials 2004, 16, pp. 3593-3596.
76. Ashino, T.; Takada, K. "Determination of Lithium and Niobium in Lithium-Niobate by Inductively-Coupled Plasma-Atomic Emission-Spectrometry after Fusion with Ammonium Hydrogensulfate." Analytical Sciences 1993, 9, pp. 737-739.
77. Ashino, T.; Makabe, K.-i.; Takada, K. "Determination of elements in lithium potassium niobate and lithium niobate containing vanadium by ICP-AES." Fresenius' Journal of Analytical Chemistry 1994, 349, pp. 772-774.
78. Powell, C.J. "Recommended Auger parameters for 42 elemental solids." Journal of Electron Spectroscopy and Related Phenomena 2012, 185, pp. 1-3.
79. Vitalij Pecharsky; Zavalij, P., Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition; Springer US: US, 2009.
80. Simoes, A.Z.; Gonzalez, A.H.M.; Cavalheiro, A.A.; Zaghete, M.A.; Stojanovic, B.D.; Varela, J.A. "Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors." Ceramics International 2002, 28, pp. 265-270.
81. Shannon, R.D. "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides." Acta Crystallographica Section A 1976, 32, pp. 751-767.
82. De Miguel-Sanz, E.M.; Carrascosa, M.; Arizmendi, L. "Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe." Physical Review B 2002, 65, pp. 1651011-1651017.
83. Carruthers, J.R.; Peterson, G.E.; Grasso, M.; Bridenbaugh, P.M. "Nonstoichiometry and crystal growth of lithium niobate." Journal of Applied Physics 1971, 42, pp. 1846-1851.
84. Wöhlecke, M.; Corradi, G.; Betzler, K. "Optical methods to characterise the composition and homogeneity of lithium niobate single crystals." Applied Physics B: Lasers and Optics 1996, 63, pp. 323-330.
85. Su, T.T.; Zhai, Y.C.; Jiang, H.; Gong, H. "Studies on the thermal decomposition kinetics and mechanism of ammonium niobium oxalate." Journal of Thermal Analysis and Calorimetry 2009, 98, pp. 449-455.
86. Gomes, M.A.B. "The Electrochromic Process at Nb2O5 Electrodes Prepared by Thermal Oxidation of Niobium." Journal of The Electrochemical Society 1990, 137, pp. 3067-3070.
87. Bahl, M.K. "ESCA studies of some niobium compounds." Journal of Physics and Chemistry of Solids 1975, 36, pp. 485-491.
88. Steiner, P.; Höchst, H.Z. "X-ray excited photoelectron spectra of LiNbO3: A quantitative analysis." Zeitschrift für Physik B Condensed Matter 1979, 35, pp. 51-59.
89. Yamashita, T.; Hayes, P. "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials." Applied Surface Science 2008, 254, pp. 2441-2449.
90. Kovács, L.; Wohlecke, M.; Jovanović, A.; Polgár, K.; Kapphan, S. "Infrared absorption study of the OH vibrational band in LiNbO3 crystals." Journal of Physics and Chemistry of Solids 1991, 52, pp. 797-803.
91. Ohira, M.; Chen, Z.; Kasamatsu, T.; Shiosaki, T. "Crystal growth of LiNbO3:Fe and its photorefractive properties." Japanese Journal of Applied Physics 1991, 30, pp. 2326-2329.
92. Kushwaha, S.K.; Maurya, K.K.; Vijayan, N.; Bhagavannarayana, G. "Crystalline perfection, EPR, prism coupler and UV-VIS-NIR studies on Cz-grown Fe-doped LiNbO3: A photorefractive nonlinear optical crystal." CrystEngComm 2011, 13, pp. 4866-4872.
93. Dai, L.; Su, Y.Q.; Wu, S.P.; Guo, J.J.; Xu, C.; Xu, Y.H. "Influence of Li/Nb ratios on defect structure and photorefractive properties of Zn: In: Fe: LiNbO3 crystals." Optics Communications 2011, 284, pp. 1721-1725.
94. Xu, C.; Yang, C.; Dai, L.; Sun, L.; Xu, Y.; Cao, L. "Influence of Li and Nb ratios on the defect structure and exposure energy in LiNbO3:Fe:Mn:Zr crystals." Journal of Alloys and Compounds 2011, 509, pp. 4167-4170.
95. Caciuc, V.; Postnikov, A.V.; Borstel, G. "Ab initiostructure and zone-center phonons in LiNbO3." Physical Review B 2000, 61, pp. 8806-8813.
96. Margueron, S.; Bartasyte, A.; Glazer, A.M.; Simon, E.; Hlinka, J.; Gregora, I.; Gleize, J. "Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3." Journal of Applied Physics 2012, 111, pp. 1041051-1401056.
97. Repelin, Y.; Husson, E.; Bennani, F.; Proust, C. "Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations." Journal of Physics and Chemistry of Solids 1999, 60, pp. 819-825.
98. Ridah, A.; Bourson, P.; Fontana, M.D.; Malovichko, G. "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3." Journal of Physics: Condensed Matter 1997, 9, pp. 9687-9693.
99. Sanna, S.; Neufeld, S.; Rüsing, M.; Berth, G.; Zrenner, A.; Schmidt, W.G. "Raman scattering efficiency in LiTaO3 and LiNbO3 crystals." Physical Review B 2015, 91, pp. 2243021-2243029.
100. Sidorov, N.V.; Serebryakov, Y.A. "Investigation of Structural Peculiarities of Impure Lithium-Niobate Crystals by Raman-Spectroscopy." Vibrational Spectroscopy 1994, 6, pp. 215-223.
101. Popa, M.; Kakihana, M. "Ultrafine niobate ceramic powders in the system RExLi1−xNbO3 (RE: La, Pr, Sm, Er) synthesized by polymerizable complex method." Catalysis Today 2003, 78, pp. 519-527.
102. Chernaya, T.S.; Volk, T.R.; Verin, I.A.; Simonov, V.I. "Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality." Crystallography Reports 2008, 53, pp. 573-578.
103. Etschmann, B.; Ishizawa, N.; Streltsov, V.; Oishi, S. "A synchrotron X-ray diffraction analysis of near-stoichiometric LiNbO3." Zeitschrift für Kristallographie - Crystalline Materials 2001, 216, pp. 455-461.
104. Zotov, N.; Boysen, H.; Schneider, J.; Frey, F. "Application of combined neutron and X-ray powder diffraction refinements to the structure of congruent lithium niobate." Materials Science Forum 1994, 166-169, pp. 631-636.
105. Lehnert, H.; Boysen, H.; Frey, F.; Hewat, A.; Radaelli, P. "A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3." Zeitschrift für Kristallographie - Crystalline Materials 1997, 212, pp. 712-719.