| 研究生: |
魏任宏 Wei, Jen-Hung |
|---|---|
| 論文名稱: |
環形鰭片在不同接觸壓力與熱導下之熱應力分析 Thermal Stress Analysis of Annular Fin Subject to Varying Contact Pressure and Heat Conduction |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 共同指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 接觸熱導 、接觸壓力 、熱傳遞 、熱應力 、環形鰭片 |
| 外文關鍵詞: | Thermal contact conductivity, Contact pressure, Heat transfer, Thermal stress, Annular fin |
| 相關次數: | 點閱:118 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討傳送飽和水蒸汽之變溫內管與其環型鰭片在不同接觸壓力之熱傳遞與熱應力問題。主要相關變量包括鰭片與內管之干涉量、鰭片材質以及內外徑比,以求取在不同變量下溫度與熱應力分布,及所帶來的超出設計上限之可能破壞,確認系統能在安全範疇下運作。
首先考慮無熱阻情形下並給予內管壁一隨時間變化之溫度邊界條件與該溫度下之飽和水蒸汽壓,求解得兩介面之接觸壓力,接者利用Yovanovich經驗式換算出接觸熱導,再接觸熱導作為鰭片之邊界條件求解其溫度分布曲線,並利用溫度場求得熱應力分布曲線,包含徑向應力與切向應力。文中探討不同干涉量及不同內外徑比對於鰭片之溫度分布、介面溫差、熱應力分布之影響,以及穩態時之鰭片熱傳效率與熱傳量之關係。
研究結果得知,接觸壓力影響接觸熱導,而接觸熱導影響鰭片熱傳效率。又接觸面上的溫差會隨著接觸壓增大而變小,干涉量可有效地縮小溫度差距且應力場大小會隨著干涉量、內外徑比與其本身材料熱膨脹率而變化。干涉量越大接觸面附近周向應力越小,而徑向應力反而會越大。又內外徑比越大對於周向與徑向之應力都會越大。
The purpose of this paper is to investigate the heat transfer and thermal stress of the annular fin with time-dependent temperature of the inner tube and different contact pressures between the fin and inner tube. The main relevant variables include the interference bet-ween the fin and the inner tube, fin material, and the ratio of the inner and outer diameters of the fin. In order to obtain the temperature and thermal stress distribution under different variables and the possible damage beyond the designing limit.
The research results show that the contact pressure affects the thermal contact conductivity, and the contact thermal conductivity affects the heat transfer efficiency of the fin. The temperature difference on the contact surface becomes smaller as the contact pressure increases. The amount of interference can effectively reduce the temperature difference and the magnitude of the stress field changes with the amount of interference, the ratio of the inner and outer diameters of the fin, and the thermal expansion rate of the material itself. The larger the amount of interference, the smaller the circumferential stress near the contact surface, and the greater the radial stress. Furthermore, the larger the ratio of the inner and outer diameters of the fin, the greater the stress in the circumferential stress and the radial stress.
[1] 段松屏,伍青山,翅片管各種加工工藝的分析。水利電力機械06期1999年。
[2] Aziz, A., “Periodic Heat Transfer in Annular Fins,” J. Heat Transfer, Vol. 97, No. 2, pp. 302-303, 1975.
[3] Yovanovich, M.M., Culham, J.R., Lemczyk, T.F., “Simplified Solutions to Circular Annular Fins with Contact Resistance and End Cooling,” Journal of Thermophysics and Heat Transfer, Vol. 2, No. 2,pp. 152-157, 1988.
[4] Ullmann, A., Kalman, H., “Efficiency and Optimized Dimensions of Annular Fins of Different Cross-section Shapes,” International Journal of Heat and Mass Transfer, Vol. 32, No. 6, pp. 1105-1110, 1989.
[5] Campo, A., Harrison, L., “Prediction of Safe Tip Temperatures in Uniform Annular Fins for The Design of Thermal Exchange Equipment via Symbolic mathematics,” International Communications in Heat and Mass Transfer, Vol. 21, No. 4, pp. 531-538, 1994.
[6] Look Jr., D.C., “Fin on a Pipe (Insulated Tip): Minimum Conditions for Fin to Be Beneficial,” Heat Transfer Engineering, Vol. 16, No. 3, pp. 65-75, 1995.
[7] Look Jr., D.C., “1-D Fin Tip Boundary Condition Corrections,” Heat Transfer Engineering, Vol. 18, No. 2, pp. 46-49, 1997.
[8] Kang, H.S., Look Jr., D.C., “Two Dimensional Trapezoidal Fins Analysis,” Computational Mechanics, Vol. 19, No. 3, pp. 247–250, 1997.
[9] Campo, A., Rodrfguez, F., “Approximate Analytic Temperature Solution for Uniform Annular Fins by Adapting the Power Series Method,” International Communications in Heat and Mass Transfer, Vol. 25, No. 6, pp. 809-818, 1998.
[10] Yu, L.T., Chen, C.K., “Application of the Taylor Transformation to the Transient Temperature Response of an Annular Fin,” Heat Transfer Engineering, Vol. 20, No. 1, pp. 78-87,1999.
[11] Shuja, S.Z., Zubair, S.M., Khan, M.S., “Thermoeconomic Design and Analysis of Constant Cross-sectional Area Fins,” Heat and Mass Transfer, Vol. 34, No. 5, pp. 357–364, 1999.
[12] Antar, M.A., “Steady and Transient Numerical Analysis of the Performance of Annular Fins,” International Journal of Energy Research, Vol. 25, No. 13, pp. 1197-1206, 2001.
[13] Kraus, A.D., Aziz, A., Welty, J.R., Extended surface heat transfer, John Wiley & Sons, Inc., New York, 2002.
[14] Coşkun, S.B., Atay, M.T., “Fin Efficiency Analysis of Convective Straight Fins with Temperature Dependent Thermal Conductivity Using Variational Iteration Method,” Applied Thermal Engineering, Vol. 28, No. 17, pp. 2345-2352, 2008.
[15] Arslanturk, C., “Analysis of Thermal Performance of Annular Fins with Variable Thermal Conductivity by Homotopy Analysis Method,” Journal of Thermal Science and Technology, Vol. 30, No. 2, pp. 1-7, 2010.
[16] Aziz, A., “Optimization of Rectangular and Triangular Fins with Convective Boundary Conditions,” International Communications in Heat and Mass Transfer, Vol. 12, No. 4, pp. 479-482, 1985.
[17] Mustafa, M.T., Zubair, S. M., Arif, A. F. M., “Thermal Analysis of Orthotropic Annularfins with Contact Resistance: A Closed-form Analytical Solution,” Applied Thermal Engineering, Vol. 31, No. 5, pp. 937-945, 2011.
[18] Wu, S.S., “Analysis on Transient Thermal Stresses in an Annular Fin,” Journal of Thermal Stresses, Vol. 20, No. 6, pp. 591-615, 1997.
[19] Chiu, C.H., Chen, C. K., “Application of The Decomposition Method to Thermal Stresses in Isotropic Circular Fins with Temperature-dependent Thermal Conductivity,” Acta Mechanica, Vol. 157, No. 1, pp. 147–158, 2002.
[20] Jabbari, M., Sohrabpour, S., Eslami, M.R., “Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Radially Symmetric Loads,” International Journal of Pressure Vessels and Piping, Vol. 79, No. 7, pp. 493-497, 2002.
[21] Ayers, G.H., “Cylindrical Thermal Contact Conductance,” Master's thesis, Texas A&M University. Texas A&M University, 2003.
[22] Babu, K.N., “Thermal Contact Resistance: Experiments and Simulation,” Master's thesis, Chalmers University of Technology, 2015.
[23] 馬麗娜, 固定結合面接觸熱導建模研究。碩士論文。太原科技大學2014。
[24] Sridhar, M., Yovanovich, M.M., “Critical Review of Elastic and Plastic Thermal Contact Conductance Models and Comparison with Experiment,” Journal of Thermophysics and Heat Transfer, Vol. 8, No. 4, pp. 633-640, 1994.
[25] Mikić, B.B., “Thermal Contact Conductance: Theoretical Considerations,” International Journal of Heat and Mass Transfer, Vol. 17, No. 2, pp. 205-214, 1974.
[26] Cooper, M.G., Mikić, B.B., Yovanovich, M.M., “Thermal Contact Conductance,” International Journal of Heat and Mass Transfer, Vol. 12, No. 3, pp. 279-300, 1969.
[27] Yovanovich, M.M., “Four Decades of Research on Thermal Contact, Gap,and Joint Resistance in Microelectronics,” IEEE Transactions on Components and Packaging Technologies , Vol. 28, No. 2, pp. 182-206, 2005.
[28] Yovanovich, M.M., ‘‘New Contact and Gap Conductance Correlations for Conforming Rough Surfaces,” AIAA 16th Thermophysics Coference, Palo Alto, CA, June 1984 (AIAA Paper No. 81-1164).
[29] Lee, Z.Y., Chen, C.K., Hung, C.I, “Hybrid Numerical Method Applied to Multilayered Hollow Cylinder with Time-Dependent Boundary Conditions,” Journal of Thermal Stresses, Vol. 28, No. 8, pp. 839-860, 2005.
[30] Dechaumphai, P., Thornton, E.A., “Improved Finite Element Methodology for Integrated Thermal Structural Analysis,” NASA Contractor Reports, 10.1007/978-1-4612-3786-0_13., 1982.
[31] Logan, D.L., A First Course in the Finite Element Method Fourth Edition, pp. 617-622, CL-Engineering, January 2011.
[32] Newmark, N.M., “A method of computation for structural dynamics, Journal of Engineering Mechanics,” Journal of the Engineering Mechanics Division, Vol. 85, No. 3, pp. 67-94, 1959.
[33] Suli, E., Mayers, D.F., An Introduction to Numerical Analysis, John Wiley & Sons; 2 edition, January 1989.
[34] 顧維廉, 高溫動力鋁擠型機熱變形之有限元素分析。碩士論文。逢甲大學2006。