簡易檢索 / 詳目顯示

研究生: 蕭景瑞
Hsiao, Ching-Jui
論文名稱: 應用於多標準可重組視訊解碼器之微程式控制可重組語法分析器
Reconfigurable Parser for Multi-standard Reconfigurable Video Coding Decoder with Microprogrammed Control
指導教授: 李國君
Lee, Gwo-Giun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 77
中文關鍵詞: 語法分析器可重組架構微程式控制
外文關鍵詞: Parser, Reconfigurable Architecture, Microprogrammed Control
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,利用微程式控制可抽換微碼的高彈性度,我們提出具高彈性可應用於多標準可重組視訊解碼器的可重組語法分析器。基於由上而下的設計方式,由於語法分析器的回饋式控制,加入微程式控制的考量去精煉高層級資料流至低層級以得到我們所提出操作於108MHz下的可重組語法分析器之架構,藉由萃取控制上的共通性以得到部分共用的微指令格式,能夠省去可重組資料路徑上切換不同標準之控制。由於1920x1088@60fps的高規格應用有高輸出率的要求,定義有效率的微指令也因此受限,在此限制條件下,我們提出的微指令集不僅能提升彈性度,與分開獨立實現並以TSMC 0.18微米製程合成的有限狀態機控制相較下,在輸出控制邏輯部分更省去20.29%的邏輯閘數,由於微指令格式的高比例共用,當加入新的標準時,我們可以想像到更高百分比的節省。透過此可重組控制單元的個案研究,我們可以說針對可重組視訊編碼或其他多用途之應用,微程式控制將成為趨勢。

    In this thesis, utilizing the characteristic of high flexibility in microprogrammed control with reloadable microcode, a highly flexible reconfigurable parser for multi-standard reconfigurable video coding decoder is proposed. Based on top-down design methodology, the high level dataflow is refined into low level, with microprogrammed control taken into consideration due to the nature of feedback control in parser, to achieve the proposed architecture of reconfigurable parser which operates at 108MHz . The commonalities in control are extracted to form the partially shared format of microinstruction which also saves the switching control between standards for reconfigurable datapath. Due to high throughput demand in high-end application, i.e. 1920x1088@60fps, defining effective microinstruction is quite limited. Under such limitation, the proposed microinstruction set for microprogrammed control not only raises the flexibility but also saves 20.29% gate count as compared to individually implemented finite state machine based control in output control logic synthesized in TSMC 0.18 μm technology. Owing to the high proportion of shared format of microinstruction, the higher saving percentage can be envisioned when one another video coding standard is involved in the reconfigurable parser. As a case study of reconfigurable control unit, we claim that microprogrammed control is the trend for reconfigurable video coding or other multi-purpose application.

    Chapter 1 Introduction 1 1.1 Video Coding 1 1.1.1 Reconfigurable Video Coding 2 1.2 Motivation 2 1.3 Organization of This Thesis 3 Chapter 2 Overview of MPEG-2 and AVC/H.264 Standard 4 2.1 Introduction to MPEG-2 Standard 4 2.2 Introduction to AVC/H.264 Standard 6 2.2.1 Entropy Coding 7 2.2.2 Inverse Quantization 7 2.2.3 Inverse Transform 8 2.2.4 Intra Prediction 8 2.2.5 Inter Prediction 9 2.2.6 Deblocking Filter 9 2.3 Introduction to Parser in MPEG-2 and AVC/H.264 9 Chapter 3 RVC Decoder 12 3.1 Introduction to Algorithm/Architecture Co-exploration 12 3.2 Specification 13 3.3 High Level Dataflow Model of RVC Decoder 14 3.3.1 High Level Block Diagram 14 3.3.2 High Level Dataflow Scheduling 16 3.3.2.1 Processing Granularity and Processing Order 16 3.3.2.2 Decoding Schedule 18 3.3.3 High Level Dataflow Model in System C 19 3.4 System Architecture 20 3.4.1 Software/Hardware Partition 20 3.4.2 Dual-Bus 22 3.4.3 Memory Controller 22 3.4.4 System Controller 22 3.4.5 Control Register and Status Register 23 Chapter 4 Behavior of Reconfigurable Parser 25 4.1 Parsing Flow 25 4.2 Parsing Process 28 4.2.1 Fixed Length Code 31 4.2.2 Exp-Golomb Code 32 4.2.3 Not Exist Syntax Elements 33 Chapter 5 Proposed Reconfigurable Parser with Microprogrammed Control 35 5.1 Flexibility in Reconfigurable Architecture 35 5.2 Low Level Dataflow of Reconfigurable Parser 37 5.2.1 Block Diagram and Scheduling Table 37 5.2.1.1 Without Control 37 5.2.1.2 With Microprogrammed Control 38 5.2.1.3 Final Adoption 40 5.3 Control Flow 45 5.4 Pre-process Scheme for Real-time Constraint 48 5.5 Commonality Extraction for Reconfigurable Parser 50 5.5.1 Reconfigurable Exp-Golomb Code Parser 52 5.5.2 Shared Syntax Element Registers 53 5.5.3 Entropy-SysCtrl FIFO 54 5.5.4 Microsequencer 57 5.6 Design of Microprogrammed Control 61 5.6.1 Microinstruction 61 5.6.1.1 Shared Format of Microinstruction 61 5.6.2 Microcode 65 5.6.2.1 Vertical Microcode 65 5.6.2.2 Memory Configuration 67 5.6.3 Proposed Microarchitecture of Microprogrammed Control 68 5.7 Proposed Architecture of Reconfigurable Parser 68 Chapter 6 Experimental Result and Verification 70 6.1 Experimental Result 70 6.2 Verification 73 Chapter 7 Conclusion and Future Work 74 7.1 Conclusion 74 7.2 Future Work 75 Reference 76

    [1] ISO/IEC 13818-2, Information Technology – Coding of moving pictures and associated audio, 1996.
    [2] ITU-T Recommendation H.264, “Advanced video coding for generic audiovisual services,” Draft, March 2005.
    [3] Gwo Giun Lee, Euee S. Jang, Marco Mattavelli, Mickaël Raulet, Christophe Lu-carz, Hyungyu Kim, Sinwook Lee, He-Yuan Lin, Jorn Janneck, Dandan Ding, and Chun-Jen Tsai, “Text of ISO/IEC FDIS 23001-4 Codec Configuration Re-presentation,” ISO/IEC JCT1/SC29/WG11 MPEG w10349, Lausanne, Switzer-land, Feb. 2009.
    [4] Gwo Giun Lee, Ming-Jiun Wang, Bo-Han Chen, Jiun-Fu Chen, Ping-Keng Jao, Ching-Jui Hsiao, Ling-Fei Wei, “Reconfigurable Architecture for Deinterlacer based on Algorithm/Architecture Co-Design.,” Journal of Signal Processing Systems, special issue on reconfigurable video coding. Vol.50/2008-Vol.61/2010,June.2009.
    [5] Gwo-Giun Lee, Wei-Chiao Yang, Min-Shan Wu, and He-Yuan Lin, "Reconfigurable architecture design of motion compensation for multi-standard video coding," in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, 2010, pp. 2003-2006.
    [6] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and System for Video Technology, vol. 13, issue 7, pp. 560-576, Jul. 2003.
    [7] Iain E. G. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia,” John Wiley and Sons, 2003, ISBN 0470848375, 9780470848371.
    [8] G. G. Lee, et al., "Algorithm/Architecture Co-Exploration of Visual Computing on Emergent Platforms: Overview and Future Prospects," IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 1576-1587, Nov 2009.
    [9] David A. Patterson and John L. Hennessy, “Computer Organization and Design: The Hardware/Software Interface,” Elsevier, 2005, ISBN 9812592172, 9789812592170.
    [10] K.Zarrineh, and S.J. Upadhyaya, “On programmable memory built in-self test architecture” in Proc. IEEE Design, Automation and Test in Europe Conference, 1999.
    [11] Barkalov, A., Titarenko, L., Bieganowski, J., “Microprogram control unit with code sharing and extended microinstruction format,” IEEE Design & Test Symposium (EWDTS), 2010 East-West.
    [12] ITU-T H.264.1 “Conformance specification for H.264 advanced video coding”, Mar. 2005.
    [13] H.264/AVC reference software JM16.2, http://iphome.hhi.de/suehring/tml/.
    [14] Recommendation ITU-R BT.656-4, “Interfaces for Digital Component Video Signals in 525-Line and 625-Line Television Systems Operating at The 4:2:2 Level of Recommendation ITU-R BT.601 (Part A)”, 1998.
    [15] Gwo Giun Lee, Chia-Cheng, Lo, Yuan-Ching, Chen, He-Yuan Lin, Ming-Jiun Wang, ”Low Complexity and High Throughput VLSI Architecture for AVC/H.264 CAVLC Decoding, ” IET Image processing . Vol. 4, Iss. 2, pp. 81-91, Apr. 2008
    [16] S.-H. Wang, W.-H. Peng, Y. He, G.-Y. Lin, C.-Y. Lin, S.-C. Chang, C.-N. Wang and T. Chiang, ”A Software-Hardware Co-Implementation of MPEG-4 Advanced Video Coding (AVC) Decoder with Block Level Pipelining”, The Journal of VLSI Signal Processing, Volume 41, 2005, Pages 93 - 110.
    [17] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong, Peilin Liu, Goto, S., ” A 530 Mpixels/s 4096x2160@60fps H.264/AVC High Profile Video Decoder Chip,” IEEE Journal of Solid-State Circuits, Vol. 46, Iss. 4, pp.777-788, 2011.
    [18] K. Xu , C. S. Choy , C. F. Chan and K. P. Pun ”Power-efficient VLSI implementation of bitstream parsing in H.264/AVC decoder,” Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), p.5339 , 2006.
    [19] Yuan-Teng Chang, Wen-Hao Chung, ” A high-performance entropy decoding system for H.264/AVC,” IEEE International Conference on Multimedia and Expo (ICME), 2009.
    [20] Jeonhak Moon and Seongsoo Lee, “Design of H.264 AVC Entropy Decoder without Internal ROMRAM Memories”, ISCCSP, pp. 1464 – 1467, March 2008

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE