簡易檢索 / 詳目顯示

研究生: 周耀閔
Chou, Yao-Min
論文名稱: 應用時域量測方式於微幫浦鋯鈦酸鉛致動器之改良式BVD模型研究
Modified BVD Model of PZT Actuator by Time Domain Method for Micropump Application
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 41
中文關鍵詞: 微流體微型幫浦壓電電性模組改良式BVD模組鋯鈦酸鉛驅動器
外文關鍵詞: Lead zirconate titanate (PZT) actuator, Electrical model, Microfluidics, Micropump, modified Butterworth-Van Dyke (BVD) model
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微機電與微製程技術的進步,微全分析系統已經發展並廣泛應用在藥物治療、醫療診斷、生化分析等應用上。為了要發展高精準度控制的藥物輸送系統,以壓電材料(PZT)為致動器的微型幫浦,其擁有應變時間短、高解析度的形變等驅動特性最適合用來實行在需要高精準控制的系統上面。因此我們需要一個適合的壓電等效電路來作為最佳化前置驅動器的參考資訊使得壓電式微型幫浦在效能上有所提升。在本研究中,將以BVD model為基礎發展出新的壓電等效電路模型,其中包含傳統BVD model與一個串聯的電阻。用此壓電等效電路描述PZT致動器在高電壓、低頻率的方波訊號驅動下所產生的電性反應。另外,透過調整不同輸入方波的電壓與偏壓,將所量測到的實驗數據用來建立相對應的PZT等效電路模型,來說明所新加入的電阻是必要在模擬微幫浦PZT致動器的電性反應上。最後透過常見電路分析軟體SPICE與實驗結果來做比較以驗證此壓電模組的正確性與此方式的可行性。

    The field of micro-electro-mechanical systems (MEMs) and microfabrication has produced micro-total-analysis systems (μTAS), which are widely used in medicine, diagnostics, and biological and chemical research. For the development of high precision drug delivery systems, micropumps with a lead zirconate titanate (PZT) actuator, which has a fast response time and high resolution, are most likely to be applied in implementations. To improve the performance of PZT micropumps utilized in the microfluidics field, suitable models are required to enable the optimization of the PZT actuator driving circuits. This study proposes a modified Butterworth-Van Dyke (BVD) model which consists of a BVD model in series with an electrical resistance that describes a PZT actuator driven by a square pulse with a relatively high voltage and low frequency for micropump applications. Experiments were conducted to assess parameters of the model at various voltages; they indicate that the electrical resistance is essential for modeling the PZT actuator of the micropump. The electrical model was verified using a SPICE simulation, whose numerical results were compared with the experimental data for the current response of the PZT actuator. The results show a close correlation between the simulation of the electrical model and the measurements of the PZT actuator under real operating conditions.

    摘要................................................I Abstract................................................II Acknowledgment..........................................III Content.................................................IV List of Figures.........................................VI List of Tables.........................................VIII Chapter 1 Introduction..................................1 1.1 Motivation and back ground..........................1 1.2 Organization of the dissertation....................4 Chapter 2 Methods.......................................6 2.1 Examples of PZT actuator for micropumps.............6 2.2 Experiments.........................................7 2.3 Modified BVD model..................................10 2.4 Parameters extraction...............................13 2.4.1 General observations on experimental data.........13 2.4.2 Solving C0 and Rx in region I.....................16 2.4.3 Solving dynamic C0 with constant Rx in region II..21 2.4.4 Determining values of parameters R1, C1 and L1 in region III..............................................23 2.4.4.1 Determining α and ωd............................25 Chapter 3 Experimental Results and Discussions..........27 3.1 Verification of modified BVD model..................27 3.2 Swing-voltage stimulus..............................28 3.3 Bias-voltage stimulus...............................32 Chapter 4 Conclusions and Future Work...................37 4.1 Conclusions.........................................37 4.2 Future Work.........................................38 References..............................................39

    [1] Fair RB, Khlystov A, Srinivasan V, Pamula VK, Weaver KN (2004) Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform. Proc SPIE 5591: 113-124
    [2] Andersson H, Van den Berg A (2003) Microfluidic devices for cellomics: A review. Sens Actuator B Chem 92: 315-325
    [3] Van Lintel HTG, Van De Pol FCM, Bouwstra S (1988) Piezoelectric micropump based on micromachining of silicon. Sensor Actuator 15: 153-167
    [4] Jang LS, Li YJ, Lin SJ, Hsu YC, Yao WS, Tsai MC, Hou CC (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9: 185-194
    [5] Zengerle R, Ulrich J, Kluge S, Richter M and Richter A (1995) A bidirectional silicon micropump Sensor Actuator A 50: 81–86
    [6] Van De Pol FCM, van Lintel HTG, Elwenspoek M, Fluitman JHJ (1990) A thermopneumatic micropump based on micro-engineering techniques. Sensor Actuator A 21: 198–202
    [7] Rapp R, Schomburg WK, Maas D, Schulz J, Stark W (1994) LIGA micropump for gases and liquids. Sensor Actuator A 40: 57–61
    [8] Nguyen TT, Pham M, Goo NS (2008) Development of a Peristaltic Micropump for Bio-Medical Applications Based on Mini LIPCA. J Bionic Eng 5: 135-141
    [9] Koch M, Harris N, Evans AGR, White NM, Brunnschweiler A (1998) A novel micromachined pump based on thick-film piezoelectric actuation. Sensor Actuator A 70: 98–103
    [10] Stehr M, Messner S, Sandmaier H, Zengerle R (1996) The VAMP: a new device for handling liquids or gases. Sensor Actutator A 57: 153–157
    [11] Selam JL (2001) External and implantable insulin pumps: current place in the treatment of diabetes. Exp Clin Endocrinol Diabetes 109: S333–40
    [12] Setter N, Damjanovic D, Eng L, et al. (2006) Ferroelectric thin films: Review of materials, properties, and applications. J Appl Phys 100: 051606
    [13] Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 10: 136-146
    [14] Cui Q, Liu C, Zha XF (2007) Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid 3: 377-390
    [15] Campolo D, Sitti M, Fearing RS (2003) Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 50: 237-244
    [16] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (1987) IEEE standard on piezoelectricity. IEEE ANSI/IEEE Std. 176-1987, New York
    [17] Georgiou HMS, Mrad RB (2004) Experimental and theoretical assessment of PZT modeled as RC circuit subject to variable voltage excitations. Mechatronics 14: 667-674
    [18] Uchino K, Zheng J, Joshi A, et al. (1998) High power characterization of piezoelectric materials. J Electroceram 2: 33-40
    [19] Jang LS, Kan WH, Chen MK, Chou YM (2009) Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique. Microfluid Nanofluid Doi: 10.1007/s10404-009-0416-7
    [20] Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Contr Syst Mag 17: 69-79

    下載圖示 校內:2012-08-11公開
    校外:2012-08-11公開
    QR CODE