簡易檢索 / 詳目顯示

研究生: 黃子浩
Huang, Tzyy-Haw
論文名稱: 非接觸型電能轉換器於臭氧驅動電路之設計實現
Contactless Energy Converters for Design and Realization of Ozone-Driven Circuits
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 非接觸電能傳輸臭氧驅動電路零電壓切換
外文關鍵詞: Contactless Energy Transfer, Ozone-Driven Circuits, Zero-Voltage Switching
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出結合非接觸電能傳輸技術與臭氧驅動電路之系統設計拓樸結構,此設計乃由於系統操作在不同負載阻抗與感應線圈間距時,常導致非接觸電能傳輸電路之等效阻抗特性發生改變,故需藉由諧振補償電路與操作頻率之調整修正,期使前級換流器開關可達成零電壓切換效果。另於後級臭氧驅動電路部分,本文係以壓電變壓器作為電路之諧振槽基礎,其諧振元件主由內部等效串聯RLC與一外部並聯電容組成,並整合微控制器回授壓電變壓器輸出端之電流訊號,以實現整體電路之定功率操作。茲為能驗證此電路之實際應用可行性,本文經由電路軟體模擬與硬體實測,測試結果顯示本文所提之電路設計方法確有助於提升整體系統效能提昇,同時可擴增至可攜式商品之開發應用。

    The thesis proposes a system design topology combining a contactless energy converter with ozone-driven circuits. This circuit design is motivated because the equivalent impedance of contactless energy converter may vary significantly due to different load impedances and various induction coil gaps. The resonance compensation circuit is hence required to employ with the adjustment of operation frequency, anticipating that the zero-voltage switching of converters at the first stage can be achieved. Next, for the second stage that comes with the ozone-driven circuit, the piezoelectric transformer is used as the resonance tank that consists of RLC circuits connected in series with the external capacitors. This circuit is then integrated with the output current signal of microcontrollers, by which the constant power operation can be better realized. To verify the practicality of this proposed circuit, both the software simulations and hardware realization have been extensively tested. Test results confirm that the proposed design is useful to improve the operation performance while the development of those portable products can be meanwhile benefitted.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1-1 研究動機及背景 1 1-2 研究方法與目的 1 1-3 內容大綱 3 第二章 電漿與壓電變壓器特性介紹 5 2-1 簡介 5 2-2 電漿特性及其種類之簡介 5 2-3 電漿負載 7 2-4 壓電效應及壓電變壓器 8 2-5 壓電變壓器等效電路特性分析 10 第三章 非接觸電能傳輸系統與臭氧驅動電路之架構分析 13 3-1 簡介 13 3-2 換流器與整流濾波電路之設計分析 14 3-2-1 各類換流器簡介 14 3-2-2 換流器之開關元件柔性切換分析 16 3-2-3 整流濾波電路介紹 17 3-3 非接觸感應線圈等效電路模型分析 18 3-3-1 非接觸感應線圈分析與設計 18 3-3-2 非接觸感應線圈等效模型分析 22 3-4 諧振補償電路分析 25 3-4-1 串聯補償電路應用於半橋式換流器之時序圖分析 26 3-4-2 SS與SP補償電路架構分析 28 3-4-3 加入不同補償電容值於SP補償電路時之分析 34 3-5 臭氧驅動電路之設計原理與系統分析 36 3-5-1 非對稱脈波寬度調變理論 36 3-5-2 臭氧驅動系統之諧振電路分析 38 第四章 系統硬體電路設計架構 42 4-1 前言 42 4-2 非接觸電能傳輸系統之設計與測試方法 42 4-2-1 半橋式換流器之驅動電路設計分析 43 4-2-2 非接觸電能傳輸系統之補償電路參數設計 47 4-2-3 整流濾波電路參數設計 49 4-2-4 非接觸電能傳輸系統之回授與偵測控制 49 4-3臭氧驅動系統之設計與測試方法 51 4-3-1 臭氧驅動系統之電路架構分析 52 4-3-2 定功率控制電漿載子芯片負載之方法 53 第五章 系統模擬與實驗結果 56 5-1 簡介 56 5-2 非接觸電能傳輸系統測試 57 5-2-1 模擬及實測非接觸電能傳輸系統之個數據波形 57 5-2-2 以相移電路實現電流波形之測試 67 5-2-3 半橋式換流器之開關柔性切換量測 69 5-3 臭氧驅動電路測試 71 5-3-1 非對稱脈寬調變控制之波形實測 71 5-3-2 電漿載子芯片負載之固定輸出功率實測 73 5-3-3 壓電變壓器之回授控制實測波形 77 5-3-4 實測壓電變壓器之輸入電壓及電流 79 5-4 歸納本文之整體系統各項實驗數據曲線圖 79 5-4-1 非接觸電能傳輸系統最佳操作頻率點記錄 80 5-4-2 非接觸電能傳輸系統輸出功率之記錄 81 5-4-3非接觸電能傳輸系統效率之記錄 82 5-4-4 記錄整體系統電路之效率值 85 第六章 結論與未來研究方向 87 6-1 結論 87 6-2 未來研究方向 88 參考文獻 89

    [1] B. G. Rodriguez-Mendez, R. Lopez-Callejas, R. Pea-Eguiluz, A. Mercado-Cabrera, R. V. Alvarado, S. R. Barocio, A. Piedad-Beneitez, J. S. Benitez-Read, and J. O. Pacheco-Sotele, “Instrumentation for Pulsed Corona Discharge Generation Applied to Water,” IEEE Transactions on Plasma Science, Vol. 36, No. 1, pp. 185-191, February 2008.

    [2] J. S. Jung and J. D. Moon, “Effective Ozone Generation with A Wire-Wire-Type Non-thermal Plasma Reactor with A Slit Barrier,” IEEE Transactions on Industry Applications, Vol. 44, No. 5, pp. 1391-1396, September/October 2008.

    [3] A. M. Gaouda, A. H. El-Hag, and S. H. Jayaram, “Detection of Discharge Activities During Pulsed-Electric-Field Food Processing,” IEEE Transactions on Industry Applications, Vol. 46, No. 1, pp. 16-22, Jane 2010.

    [4] J. M. Alonso, J. Garcia, A. J. Calleja, J. Ribas, and J. Cardesin, “Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push-Pull Inverter,” IEEE Transactions on Industry Applications, Vol. 41, No. 5, pp. 1364-1372, September/October 2005.

    [5] J. M. Kwon, W. Y. Choi, and B. H. Kwon, “Single-Stage Quasi-Resonant Flyback Converter for a Cost-Effective PDP Sustain Power Module,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 6, pp. 2372-2377, June 2011.

    [6] S. H. Lee, and R. D. Lorenz, “Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap,” IEEE Transactions on Industry Applications, Vol. 47, No. 6, pp. 2495-2504, November 2011.

    [7] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science Magazine, Vol. 317, No. 5834, pp. 83-86, June 2007.

    [8] S. L. Ho, J. Wang, W. N. Fu, and M. Sun, “A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging,” IEEE Transactions on Magnetics, Vol. 47, No. 5, pp. 1522-1525, May 2011.

    [9] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetics Resonant Coupling as a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Transactions on Power Electronics, Vol. 24, No. 7, pp. 1819-1825, July 2009.

    [10] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A Study of Loosely Coupled Coils for Wireless Power Transfer,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 57, No. 7, pp. 536-540, July 2010.

    [11] M. Kline, I. Izyumin, B. Boser, and S. Sanders, “Capacitive Power Transfer for Contactless Charging,” IEEE Applied Power Electronics Conference and Exposition, Texas, USA, pp. 1398-1404, March 2011.

    [12] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer System,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 1, pp. 148-157, February 2004.

    [13] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1801-1812, May 2009.

    [14] J. U. William. Hsu, A. P. Hu, and A. Swain, “A Wireless Power Pickup Based on Directional Tuning Control of Magnetic Amplifier,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 7, pp. 2771-2781, July 2009.

    [15] J. J. Casanova, Z. N. Low, and J. Lin, “A Loosely Coupled Planar Wireless Power System for Multiple Receivers,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 3060-3068, August 2009.

    [16] G. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 5, pp. 1590-1598, May 2010.

    [17] J. L. Villa, J. Sallan, J. F. S. Osorio, and A. Llombart, “High-Misalignment Tolerant Compensation Topology for ICPT Systems,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, pp. 945-951, February 2012.

    [18] W. Zhou, and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” IEEE Annual Conference on Applied Power Electronics, California, USA, pp. 985-990, February 2007.

    [19] O. H. Stielau, and G. A. Covic, “Design of Loosely Coupled Inductive Power Transfer System,” IEEE International Conference on Power System Technology, Perth, Western Australia, Vol. 1, pp. 85-90, August 2002.

    [20] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System with FPGA-Controlled Resonant Converter,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 9, pp. 3181-3190, September 2010.

    [21] A. K. Swain, M. J. Neath, U. K. Madawala, and D. J. Thrimawithana, “A Dynamic Multivariable State-Space Model for Bidirectional Inductive Power Transfer Systems,” IEEE Transactions on Power Electronics, Vol. 27, No. 11, pp. 4772-4780, November 2012.

    [22] J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, “Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2140-2149, June 2009.

    [23] X. Liu, and S. Y. Hui, “Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform,” IEEE Transactions on Power Electronics, Vol. 23, No. 1, pp. 455-463, Jane 2008.

    [24] S. J. Huang, T. S. Lee, F. S. Pai, and T. H. Huang, “Method of Feedback Detection for Loosely Coupled Inductive Power Transfer System with Frequency-Tracking Mechanism,” IEEE International Conference on Power Electronics and Drive Systems, Kitakyushu, Japan, pp. 784-787, April 2013.

    [25] X. Liu, and S. Y. R. Hui, “Equivalent Circuit Modeling of a Multilayer Planar Winding Array Structure for Use in a Universal Contactless Battery Charging Platform,” IEEE Transactions on Power Electronics, Vol. 22, No. 1, pp. 21-29, Jane 2007.

    [26] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for a Three-Phase Contactless Power Transfer System,” IEEE Transactions on Power Electronics, Vol. 26, No. 9, pp. 1819-1825, September 2011.

    [27] W. Fu, B. Zhang, and D. Qiu, “Study on Frequency-Tracking Wireless Power Transfer System by Resonant Coupling,” IEEE Conference on Power Electronics and Motion Control, China, pp. 2658-2663, May 2009.

    [28] D. J. Thrimawithana, and U. K. Madawala, “A Primary Side Controller for Inductive Power Transfer Systems,” IEEE Conference on Industrial Technology, Chile, pp. 661-666, March 2010.

    [29] T. S. Chan, and C. L. Chen , “LLC Resonant Converter for Wireless Energy Transmission System with PLL Control,” IEEE Conference on Sustainable Energy Technologies, Singapore, pp. 136-139, November 2008.

    [30] C. Nadal, F. Pigache, and Y. Lefevre, “First Approach for the Modeling of the Electric Field Surrounding a Piezoelectric Transformer in View of Plasma Generation,” IEEE Transactions on Magnetics, Vol. 48, No. 2, pp. 423-426, February 2012.

    [31] M. Amjad, Z. Salam, M. Facta, and S. Mekhilef, “Analysis and Implementation of Transformerless LCL Resonant Power Supply for Ozone Generation,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 650-660, February 2013.

    [32] J. P. Bonaldo, and J. A. Pomilio, “Control Strategies for High Frequency Voltage Source Converter for Ozone Generation,” International Symposium on Industrial Electronics, Italy, pp. 754-760, July 2010.

    [33] F. S. Pai, C. L. Ou, and S. J. Huang, “Plasma-Driven System Circuit Design with Asymmetrical Pulse Width Modulation Scheme,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, pp. 4167-4174, September 2011.

    [34] V. Kinnares, and P. Hothongkham, “Circuit Analysis and Modeling of a Phase-Shifted Pulse Width Modulation Full-Bridge-Inverter-Fed Ozone Generator with Constant Applied Electrode Voltage,” IEEE Transactions on Power Electronics, Vol. 25, No. 7, pp. 1739-1752, July 2010.

    [35] F. Pigache and C. Nadal, “Modeling and Identification of Rosen-Type Transformer in Nonlinear Behavior,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 58, No. 12, pp. 2562-2570, December 2011.

    [36] S. J. Huang, Y. J. Li, B. G. Huang, T. H. Huang, and T. S. Lee, “Contactless Energy-Transfer System Design for Lithium Iron Phosphate Battery-Charging Circuits,” IEEE International Conference on Power Electronics and Drive Systems, Kitakyushu, Japan, pp. 217-220, April 2013.

    [37] S. Dong, A. V. Carazo, and S. H. Park, “Equivalent Circuit and Optimum Design of a Multilayer Laminated Piezoelectric Transformer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 12, pp. 2504-2515, December 2011.

    [38] J. M. Alonso, C. Ordiz, M. A. Dalla, J. Ribas, and J. Cardesin, “High-Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 4, pp. 1513-1523, July 2009.

    [39] J. M. Alonso, C. Ordiz, and M. A. D. Costa, “A Novel Control Method for Piezoelectric-Transformer Based Power Supplies Assuring Zero-Voltage-Switching Operations,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 3, pp. 1085-1089, March 2008.

    [40] G. S. Seo, J. W. Shin, and B. H. Cho, “A Magnetic Component-Less Series Resonant Converter Using a Piezoelectric Transducer for Low Profile Application,” International Conference on Power Electronics, pp. 2810-2814, June 2010.

    [41] E. L. Horsley, A. V. Carazo, N. N. Quang, M. P. Foster, and D. A. Stone, “Analysis of Inductorless Zero-Voltage-Switching Piezoelectric Transformer-Based Converter,” IEEE Transactions on Power Electronics, Vol. 27, No. 5, pp. 2471-2483, May 2012.

    [42] S. Bronshtein, A. Abramovitz, A. Bronshtein, and I. Katz, “A Method for Parameter Extraction of Piezoelectric Transformers,” IEEE Transactions on Power Electronics, Vol. 26, No. 11, pp. 3395-3401, November 2011.

    [43] H. Nishiyama, H.Takana, S.Niikura, H. Shimizu, D. Furukawa, T. Nakajima, K. Katagiri, and Y.Nakano, “Characteristics of Ozone Jet Generated by Dielectric-Barrier Discharge,” IEEE Transactions on Plasma Science, Vol. 36, No. 4, pp. 1328-1329, August 2008.

    [44] G. M. Xu, Y. Ma, and G. J. Zhang, “DBD Plasma Jet in Atmospheric Pressure Argon,” IEEE Transactions on Plasma Science, Vol. 36, No. 4, pp. 1352-1353, August 2008.

    [45] P. Francois, P. Marek, C. Marc, and N. Bertrand, “Step-up Voltage Converter for MEMS Actuators by Piezoelectric Transformers,” IEEE Annual Conference on Industrial Electronics, Toulouse, France, pp. 889-894, November 2009.

    [46] 梁適安,“交換式電源供應器之理論與實務設計” 全華科技圖書股份有限公司,民國90年。

    [47] 王順忠,“電力電子學” 東華書局股份有限公司,民國87年。

    [48] J. M. Rivas, Y. Han, O. Leitermann, A. D. Sagneri, and D. J. Perreault, “A High-Frequency Resonant Inverter Topology with Low-Voltage Stress,” IEEE Transactions on Power Electronics, Vol. 23, No. 4, pp. 1759-1771, July 2008.

    [49] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics: Converters, Applications, and Design 3rd Edition,” John Wiley & Sons, October 2002.

    [50] dsPIC 30F4011/12 Data Sheet , Microchip Technology Inc., 2005.

    [51] Power MOSFET IRFP460 Data Sheet, STMicroelectronics, 1998.

    [52] LM339 Data Sheet, Texas Instruments, 2004.

    [53] IR2110 Data Sheet, International Rectifier, 2005.

    [54] H. L. Cheng, Y. C. Hsieh, and C. S. Lin, “A Novel Single-Stage High-Power-Factor AC/DC Converter Featuring High Circuit Efficiency,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, pp. 524-532, February 2011.

    [55] S. K. Ki, and D. D. C. Lu, “A High Step-Down Transformerless Single-Stage Single-Switch AC/DC Converter,” IEEE Transactions on Power Electronics, Vol. 28, No. 1, pp. 36-45, Jane 2013.

    [56] A. Abramovitz, and K. M. Smedley, “Analysis and Design of a Tapped-Inductor Buck-Boost PFC Rectifier with Low Bus Voltage,” IEEE Transactions on Power Electronics, Vol. 26, No. 9, pp. 2637-2649, September 2011.

    [57] R. J. Wai and J. D. Lee, “Comparison of Voltage-Source Resonant Driving Schemes for a Linear Piezoelectric Ceramic Motor,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 2, pp. 871-879, February 2008.

    無法下載圖示 校內:2023-06-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE