| 研究生: |
許智淵 Hsu, Chih-yuan |
|---|---|
| 論文名稱: |
可攜式介電電濕法微型系統之開發 Study of a portable microsystem based on electrowetting on dielectric |
| 指導教授: |
張凌昇
Jang, Ling-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 電濕潤 、微型系統 、指插電極 |
| 外文關鍵詞: | interdigitated electrode, Eelectrowetting on dielectric (EWOD), portable microsystem |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電濕潤藉由液氣之間表面張力來驅使液珠移動,其中好處有製程簡單、可控制定量的液珠、價格低廉且可用以代替微混和器等。
本研究包括一可攜式微型系統之開發以及電濕潤電極之設計探討。微型系統所含之組件包括一微處理器、直流轉換器、穩壓電路、切換電路、4X4小鍵盤以及LCD顯示模組。本微型系統可產生穩定之方波訊號,輸出範圍為50~100Vpp,頻率為1~5k Hz。而本實驗利用60Vpp,3k Hz之方波訊號驅動電濕潤元件。此裝置在不同電極上實現了電濕潤兩種基本操作,傳輸、分離動作。其中電極設計分別為正方形電極以及指插電極,藉以比較探討指插電極與正方形電極之間的優劣。
Electrowetting on dielectric (EWOD) moving droplet by surface tension effects offers some advantages, including simplicity of fabrication, control of minute volumes, low cost, substitute for micro-mixers and others.
In this work, a portable microsystem including the EWOD device, a 9V battery, an ATmega8535 microprocessor, a DC/DC converter using transformerless technology, two regulator ICs, a switch circuit, a keyboard and LCD module has been developed. The microsystem is able to generate a stable square wave in the range of 50~100Vpp and 1~5k Hz to drive the EWOD device. In this experiment, the EWOD device is driven by a square wave of 60Vpp and 3k Hz.
Two basic operations, transporting and cutting are demonstrated on square-shaped, interdigitated electrodes. The advantage and disadvantage of the interdigitated electrode are discussed comparing with the normal square-shaped electrode.
1. Shih-Kang Fan, “Digital Microfluidics Cross-Reference EWOD Actuation: Principle, Device and System”, Unversity of California Los Angeles, Degree doctor of philosophy, 2003.
2. Shih-Chyn Lin, “Study of EWOD-based Actuation for Digital Microfluidic System”, National Central University, Degree of master, June 2004.
3. T.A. Mcmahon and J.T. Bonner, On Size and Life, Scuentific American Books, New York, 1983.
4. Neil Fortner and Benjamin Shapiro, “Equilibrium and Dynamic Behavior of Micro Flows Under Electrically Induced Surface Tension Actuation Forces”, Aerospace Engineering, University of Maryland.
5. Sung Kwon Cho, Hyejin Moon and Chang-Jin Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electro-wetting-Based Actuation for Digital Microfluidic Circuits”, Journal of Micro-electromechanical Systems, Vol. 12, NO.1. Feb 2003.
6. H. Ren, R.B. Fair and M.G. Pollack, “ Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering”, Sensors and Actuators, B 98, pp.319–327, 2004.
7. Debalina Chatterjee, Boonta Hetayothin, Aaron R. Wheeler, Daniel J. King and Robin L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions”, The Royal Society of Chemistry 2006 Lab Chip, 6, pp. 199– 206, 2006.
8. Hyejin Moon and Sung Kwon Cho, “Low voltage electrowetting-on-dielectric”, Journal of applied physics, Vol. 92, No. 7, 2006.
9. Jr-Lung Lin, Gwo-Bin Lee, Yi-Hsien Chang, and Kang-Yi Lien, “Model description of contact angles in electrowetting on eielectric layers”, Langmuir, 22, 484-489, 2006.
10. Frank Gindele, Frank Gaul and Thomas Kolling, “Optical systems based on electrowetting”, MEMS MOEMS and Micromachining, Proc. Of SPIE Vol. 5455, 2004.
11. S. K. Cho, H. Moon, J. Fowler, S.-K. Fan and C.-J. Kim, “Splitting a Liquid Droplet for Electrowetting-Based Microfluidics”, Int. Mechanical Engineering Congress and Exposition, IMECE2001/MEMS-2383, New York, Nov. 2001.
12. F. Rodes, “Build a transformerless 12V-to-180V DC/DC converter”, EDN design ideas, 83-86, 2004.
13. DuPont company.
14. H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir, vol. 15, no. 20, p. 6616, 1999.
15. B. Shapiro, H. Moon, R. L. Garrel, and C.-J. Kim, “Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations,” J. Appl. Phys., vol. 93, no. 9, pp. 5794–5811, May 2003.
16. J, Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponnet, Y. Fouillet, “Actuation potentials and capillary forces in electrowetting based microsystems”, Sensors and Actuators, A: physical, vol. 134, issue 2, 2007, p471-479.