簡易檢索 / 詳目顯示

研究生: 洪廣騰
Hung, Kuang-teng
論文名稱: 有機高分子與小分子太陽能電池之研究
Studies of Organic Polymer and Small Molecule Weight Photovoltaics
指導教授: 施權峰
Shih, Cheng-feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 小分子高分子有機太陽能電池
外文關鍵詞: organic solar cells, polymer, small molecular weight
相關次數: 點閱:76下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在研究:一、以大面積的p-n接面增加小分子太陽能電池(ITO/Pentacene(五環素)/C60/BCP/Al)轉換效率。二、水氧化時間長短對高分子太陽能電池(ITO/PEODT:PSS/P3HT:PCBM/Al)轉換效率的影響,特別利用高溫即時量測系統對高分子太陽能電池進行活化能計算以及退火機制的探討。三、嘗試以小分子與高分子元件製作串接式太陽能電池。
    我們利用多層的p-n接面增加激子的分解有效地增加了短路電流,而缺陷的增加降低了填充因子,使得轉換效率降低。嘗試以高溫即時量測系統量測數據以計算活化能,數據也顯示受水氧化時間較短的元件以熱退火處理需要較少的能量即可達到元件最佳化,且轉換效率也較高。由X-Ray繞射光譜的材料分析得知在退火初時即可有效地堆疊P3HT分子而增加電洞傳輸路徑,使電子與電洞遷移率達到較佳的平衡而得到最大的短路電流。拉曼光譜顯示短時的退火大量增加了C-C單鍵的鍵結增加了SP2未定域化軌域,使電子有寬廣的空間進行傳導。以小分子與高分子元件嘗試製作之串接式太陽能電池的關鍵在於:前後元件的電流匹配,適當的中間層(intermediate layer),才能夠有效傳導電流使元件的開路電壓有好的疊加而成功製作出高效率的太陽能電池。

    In this paper, the thrust of the study: first, to increase solar cells small molecules (ITO/Pentacene/C60/BCP/Al) conversion efficiency by a large p-n junction area. Second, the duration of Water-oxidation on polymer solar cell (ITO/PEODT: PSS/P3HT:PCBM/Al) the impact of conversion efficiency, in particular the use of high-temperature in-situ measurement system for polymer solar cells as well as the annealing mechanism of the activation energy calculated explored. Third, attempt to fabricate tandem cells using small-molecule and polymer components-type solar cell.
    We use multi-layer p-n junction to increase the decomposition of excitons increased effectively short-circuit current, but the increase of defect reduced fill factor, the lower conversion efficiency. Try to calculate the activation energy by high-temperature in-situ measurement system, the data also showed a relatively short thermal annealing time for light water-oxidation processing components to achieve the optimization. By X-Ray diffraction spectra analysis, the film that during the initial annealing can effectively increase the P3HT stacking and hole transmission path, so that the electronic and hole mobility to achieve a better balance to be the largest short-circuit current. Raman spectra show a substantial increase in short-term annealing of the C-C single bond of an increase of SP2 delocalized orbital, so that there is broad electron transporting space. The key to fabricate tandem cells by connecting small molecules and polymer components is: the current match of top and bottom components, the appropriate intermediate layer (intermediate layer), will be able to make effective conduction current components and have a good open-circuit voltage superimposed successfully to arrive high-efficiency solar cells.

    目錄 摘要 I Abstract II 致謝 III 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-1-1 石化燃料對於環境之影響與太陽能電池之潛力 1 1-1-2 太陽能電池之介紹與優缺點比較 2 1-2 有機太陽能電池之發展 4 1-3 研究動機 7 1-3-1 大接面面積之有機太陽能電池最佳化 7 1-3-2 熱處理對有機太陽能電池元件之影響 7 1-4 論文架構 8 第二章 理論基礎 15 2-1 太陽光頻譜 15 2-2 無機太陽能電池之工作原理 26 2-2-1 無機太陽能電池的光電特性 26 2-2-2 無機太陽能電池之基本參數 30 2-3 有機太陽能電池之工作原理 42 2-3-1 有機太陽能電池的光電特性 42 2-3-2 有機太陽能電池之基本參數 44 2-3-3 有機太陽能電池之等效電路 45 第三章 實驗方法 48 3-1 有機太陽能的製作 48 3-1-1 ITO玻璃試片圖樣化 48 3-1-2 高分子太陽能電池 48 3-1-2-1 PEDOT:PSS電洞傳輸層成膜 49 3-1-2-2 P3HT:PCBM主動層成膜 49 3-1-2-3 鋁陰極蒸鍍 49 3-1-3 小分子太陽能電池 50 3-1-3-1 主動層材料蒸鍍 50 3-1-3-2 電洞與激子傳輸阻擋層之蒸鍍 50 3-1-3-3 鋁陰極蒸鍍 51 3-1-4 高分子串接小分子太陽能電池之嘗試製作 51 3-1-4-1 光吸收主動層與連接層製作 51 3-2 封裝 51 3-3 材料與元件特性分析 52 3-3-1 太陽光模擬器 52 3-3-2 In-Situ 量測裝置 52 3-3-3 入射光轉換光子效率量測系統(IPCE) 52 3-3-4 X光繞射儀(XRD) 53 3-3-5 拉曼光譜儀(Raman Spectrum) 53 第四章 實驗結果與討論 59 4-1 小分子太陽能電池 59 4-1-1 雙層與多層膜結構小分子太陽能電池比較 59 4-2 高分子太陽能電池 60 4-2-1 主動層受水氧影響對光電轉換效率之影響 60 4-2-2 即時退火量測 62 4-2-3 退火機制探討 63 4-3 Tandem cell之嘗試製作 66 第五章 結論與未來規劃 84 5-1 結論 84 5-2 未來規劃 85 參考文獻 86

    1. Energy Information Administration, “Electricity Prices for Households”, http://www.eia.doe.gov/emeu/international/elecprih.html
    2. Smil, V, 2006, OECD Observer 258/59: 22~23
    3. http://ck10628.spaces.live.com/blog/cns!B464FC89830FEE3E!7948.entry
    4. G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes”, Appl. Phys. Lett., 64, 1540 (1994)
    5. C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183 (1986)
    6. P. Peumans, V. Bulovi, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes”, Appl. Phys. Lett., 76, 2650 (2000)
    7. P. Peumans, and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79,126 (2001)
    8. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science, 258, 1474 (1992)
    9. N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells”, Appl. Phys. Lett., 62, 585 (1993)
    10. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, ” Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 1789 (1995)
    11. S. Yoo, B. Domercq, and B. Kippelen, “efficient thin-film organic solar cells based on Pentacene/C60 heterojunctions”, Appl. Phys. Lett., 85, 5427 (2004)
    12. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films”, Nature, 425, 158-162 (2003)
    13. C. J. Brabec, S. E. Shaheem, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Appl. Phys. Lett. 80, 1288 (2002)
    14. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, “Processing additives for improved efficiency from bulk heterojunction solar cells”, J. AM. CHEM. SOC., 130, 3619-3623 (2008)
    15. A. Kumar, G. Li, Z. Hong and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology”, Nanotechnology, 20, 165202 (2009)
    16. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermal stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater., 15, 1617-1622 (2005)
    17. Smil. V. 2006, OECD Observer 258/59: 22~23
    18. http://pvcdrom.pveducation.org/index.html
    19. P. Peumans, S. R. Forrest, “ Very-high-efficiency double-heterostructure copper phthocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126-128 (2001)
    20. H. Hoppe, N. S. Sariciftci, “Organic solar cells: an overview”, J. Mater. Res., 19, 1924-1945 (2004)
    21. Dipl. Ing. Klaus Petritsch, “ Organic Solar Cell Architectures”, Cambridge and Graz, (2000)
    22. 莊嘉琛, “太陽能工程-太陽電池篇” 全華, (1997)
    23. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, “Degradation of organic solar cells due to air exposure”, Sol. Energy Mater. Sol. Cells, 90, 3520–3530 (2006)
    24. M. Jorgensen, K. Norrman, F. C. Krebs, “Stability/degradation of polymer solar cells”, Sol. Energy Mater. Sol. Cells, 92, 686–714 (2008)
    25. L. H. Nguyen, H. Hoppe, T. Erb, S. Gunes, G. Gobsch, N. S. Sariciftci, “Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Full -erene Bulk-Heterojunction Solar Cells**”, Adv. Funct. Mater, 17, 1071 (2007)
    26. D. Gupta, S. Mukhopadhyay, K. S. Narayan, “Fill factor in organic solar cells”, Sol. Energy Mater. Sol. Cells (2008), doi:10.1016/j.solmat.2008.06.001
    27. W. D. Callister, Jr. & D. G. Rethwisch, “Fundamentals of Materials Science and Engineering An Integrated Approach”, 3rd, Wiley, Ch. 6, p.172 (2008)
    28. F. C. Chen, Y. K. Lin and C. J. Ko, “Submicron-scale manipulation of phase separation in organic solar cells”, Appl. Phys. Lett., 92, 023307 (2008)
    29. D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant, D. Knoesen, “The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material”, J. Mater. Sci., 44, 3192–3197 (2009)
    30. S. Miller, G. Fanchini, Y. Y. Lin, C. Li, C. W. Chen, W. F. Su and M. Chhowalla, ” Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing”, J. Mater. Chem., 18, 306–312 (2008)

    下載圖示 校內:2019-07-30公開
    校外:2019-07-30公開
    QR CODE