| 研究生: | 洪廣騰 Hung, Kuang-teng | 
|---|---|
| 論文名稱: | 有機高分子與小分子太陽能電池之研究 Studies of Organic Polymer and Small Molecule Weight Photovoltaics | 
| 指導教授: | 施權峰 Shih, Cheng-feng | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 電機資訊學院 - 電機工程學系 Department of Electrical Engineering | 
| 論文出版年: | 2009 | 
| 畢業學年度: | 97 | 
| 語文別: | 中文 | 
| 論文頁數: | 88 | 
| 中文關鍵詞: | 小分子 、高分子 、有機太陽能電池 | 
| 外文關鍵詞: | organic solar cells, polymer, small molecular weight | 
| 相關次數: | 點閱:76 下載:6 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本論文主旨在研究:一、以大面積的p-n接面增加小分子太陽能電池(ITO/Pentacene(五環素)/C60/BCP/Al)轉換效率。二、水氧化時間長短對高分子太陽能電池(ITO/PEODT:PSS/P3HT:PCBM/Al)轉換效率的影響,特別利用高溫即時量測系統對高分子太陽能電池進行活化能計算以及退火機制的探討。三、嘗試以小分子與高分子元件製作串接式太陽能電池。
    我們利用多層的p-n接面增加激子的分解有效地增加了短路電流,而缺陷的增加降低了填充因子,使得轉換效率降低。嘗試以高溫即時量測系統量測數據以計算活化能,數據也顯示受水氧化時間較短的元件以熱退火處理需要較少的能量即可達到元件最佳化,且轉換效率也較高。由X-Ray繞射光譜的材料分析得知在退火初時即可有效地堆疊P3HT分子而增加電洞傳輸路徑,使電子與電洞遷移率達到較佳的平衡而得到最大的短路電流。拉曼光譜顯示短時的退火大量增加了C-C單鍵的鍵結增加了SP2未定域化軌域,使電子有寬廣的空間進行傳導。以小分子與高分子元件嘗試製作之串接式太陽能電池的關鍵在於:前後元件的電流匹配,適當的中間層(intermediate layer),才能夠有效傳導電流使元件的開路電壓有好的疊加而成功製作出高效率的太陽能電池。
In this paper, the thrust of the study: first, to increase solar cells small molecules (ITO/Pentacene/C60/BCP/Al) conversion efficiency by a large p-n junction area. Second, the duration of Water-oxidation on polymer solar cell (ITO/PEODT: PSS/P3HT:PCBM/Al) the impact of conversion efficiency, in particular the use of high-temperature in-situ measurement system for polymer solar cells as well as the annealing mechanism of the activation energy calculated explored. Third, attempt to fabricate tandem cells using small-molecule and polymer components-type solar cell.
     We use multi-layer p-n junction to increase the decomposition of excitons increased effectively short-circuit current, but the increase of defect reduced fill factor, the lower conversion efficiency. Try to calculate the activation energy by high-temperature in-situ measurement system, the data also showed a relatively short thermal annealing time for light water-oxidation processing components to achieve the optimization. By X-Ray diffraction spectra analysis, the film that during the initial annealing can effectively increase the P3HT stacking and hole transmission path, so that the electronic and hole mobility to achieve a better balance to be the largest short-circuit current. Raman spectra show a substantial increase in short-term annealing of the C-C single bond of an increase of SP2 delocalized orbital, so that there is broad electron transporting space. The key to fabricate tandem cells by connecting small molecules and polymer components is: the current match of top and bottom components, the appropriate intermediate layer (intermediate layer), will be able to make effective conduction current components and have a good open-circuit voltage superimposed successfully to arrive high-efficiency solar cells.
1. Energy Information Administration, “Electricity Prices for Households”,  http://www.eia.doe.gov/emeu/international/elecprih.html
2. Smil, V, 2006, OECD Observer 258/59: 22~23
3. http://ck10628.spaces.live.com/blog/cns!B464FC89830FEE3E!7948.entry
4. G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes”, Appl. Phys. Lett., 64, 1540  (1994)
5. C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183 (1986)
6. P. Peumans, V. Bulovi, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes”, Appl. Phys. Lett., 76, 2650 (2000)
7. P. Peumans, and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79,126 (2001)
8. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science, 258, 1474 (1992)
9. N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells”, Appl. Phys. Lett., 62, 585 (1993)
10. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, ” Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 1789 (1995)
11. S. Yoo, B. Domercq, and B. Kippelen, “efficient thin-film organic solar cells based on Pentacene/C60 heterojunctions”, Appl. Phys. Lett., 85, 5427 (2004)
12. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films”, Nature, 425, 158-162 (2003)
13. C. J. Brabec, S. E. Shaheem, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Appl. Phys. Lett. 80, 1288 (2002)
14. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, “Processing additives for improved efficiency from bulk heterojunction solar cells”, J. AM. CHEM. SOC., 130, 3619-3623 (2008)
15. A. Kumar, G. Li, Z. Hong and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology”, Nanotechnology, 20, 165202 (2009)
16. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermal stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater., 15, 1617-1622 (2005)
17. Smil. V. 2006, OECD Observer 258/59: 22~23
18. http://pvcdrom.pveducation.org/index.html
19. P. Peumans, S. R. Forrest, “ Very-high-efficiency double-heterostructure copper phthocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126-128 (2001)
20. H. Hoppe, N. S. Sariciftci, “Organic solar cells: an overview”, J. Mater. Res., 19, 1924-1945 (2004)
21. Dipl. Ing. Klaus Petritsch, “ Organic Solar Cell Architectures”, Cambridge and Graz, (2000)
22. 莊嘉琛, “太陽能工程-太陽電池篇” 全華, (1997)
23. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant,  “Degradation of organic solar cells due to air exposure”, Sol. Energy Mater. Sol. Cells, 90, 3520–3530 (2006)
24. M. Jorgensen, K. Norrman, F. C. Krebs, “Stability/degradation of polymer solar cells”, Sol. Energy Mater. Sol. Cells, 92, 686–714 (2008)
25. L. H. Nguyen, H. Hoppe, T. Erb, S. Gunes, G. Gobsch, N. S. Sariciftci, “Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Full -erene Bulk-Heterojunction Solar Cells**”, Adv. Funct. Mater, 17, 1071 (2007)
26. D. Gupta, S. Mukhopadhyay, K. S. Narayan, “Fill factor in organic solar cells”, Sol. Energy Mater. Sol. Cells (2008), doi:10.1016/j.solmat.2008.06.001
27. W. D. Callister, Jr. & D. G. Rethwisch, “Fundamentals of Materials Science and Engineering An Integrated Approach”, 3rd, Wiley, Ch. 6, p.172 (2008)
28. F. C. Chen, Y. K. Lin and C. J. Ko, “Submicron-scale manipulation of phase separation in organic solar cells”, Appl. Phys. Lett., 92, 023307 (2008)
29. D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant, D. Knoesen, “The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material”, J. Mater. Sci., 44, 3192–3197 (2009)
30. S. Miller, G. Fanchini, Y. Y. Lin, C. Li, C. W. Chen, W. F. Su and M. Chhowalla, ” Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing”, J. Mater. Chem., 18, 306–312 (2008)