簡易檢索 / 詳目顯示

研究生: 謝宙勳
Hsieh, Chou-Hsun
論文名稱: 還原水滑石與石墨相炭化氮混合物合成之鈷觸媒應用於γ-戊內酯氫化為1,4-戊二醇
Cobalt catalysts derived from the reduction of layered double hydroxide/g-C3N4 in the hydrogenation of γ-valerolactone to 1,4-pentanediol
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 鈷鋁層狀雙氫氧化合物γ-戊內酯氫化炭化氮
外文關鍵詞: cobalt aluminum layered double hydroxide, gamma-valerolactone, hydrogenation, graphitic-C3N4
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用尿素水熱合成鈷鋁層狀雙氫氧化合物,同時使用一鍋法將其擔載在g-C3N4上,由於帶負電的g-C3N4會影響生長成層狀雙氫氧化合物的鈷以及鋁離子,因此單載後結構上也有改變,將該觸媒進行還原後應用於γ-戊內酯氫化至1,4-戊二醇反應。相較未擔載g-C3N4之觸媒1,4-戊二醇產率(43.7%),擔載之觸媒在產率上有明顯的增加(74.2%),其原因為在還原的過程中,鈷金屬從鈷鋁層狀雙氫氧化合物中還原出來,同時g-C3N4因熱分解產生的碳氮物質會附著於觸媒表面上,使鈷金屬與氮元素產生強鍵結作用力並且產生電子轉移,進而增加觸媒的酸性以及鹼性點位,降低γ-戊內酯開環氫化為1,4-戊二醇的活化能。

    In this research, cobalt aluminum layered double hydroxide was synthesis by urea decomposition hydrothermal method and in situ growth layered double hydroxide on graphitic C3N4.The negative charge graphitic C3N4 will affect the in situ growth process and change the structure of layered double hydroxide. After the reduction process (above 500℃), the graphitic C3N4 decomposition and cobalt metal reduced from layered double hydroxide structure. The carbon nitrogen species would interact with cobalt metal and did electron transfer. The strong bonding would create more and stronger both acid sites and basic sites. The evidence was estimate by pyridine IR and carbon dioxide IR. The reduced catalyst applied to the reaction of gamma-valerolactone hydrogenolysis to 1,4-pentanediol. Compared to the non-doping graphitic C3N4 catalyst(43.7%), the doping one show higher yield of 1,4-pentanediol(74.2%).The stability of doping catalyst would also more stable than non-doping one. The activation energy test also verified that with graphitic C3N4 decorated catalyst was able to decrease the activation energy of hydrogenolysis process.

    摘要i Abstractii 誌謝xi 圖目錄xvi 表目錄xix 第一章 引言1 1-1生質能源1 1-2含氮材料之應用2 1-3研究動機以及設計理念2 第二章 文獻回顧4 2-1 γ-戊內酯氫化產物以及其相關研究4 2-2層狀雙氫氧化合物(Layered double hydroxide, LDH)6 2-3層狀雙氫氧化物應用於觸媒催化反應8 2-4層狀雙氫氧化合物在生物質氫化之應用10 2-5石墨相炭化氮(g-C3N4)相關應用12 2-6氮摻雜於氫化觸媒的應用13 第三章 實驗15 3-1 藥品與實驗設備15 3-2觸媒製備17 3-3產物定量以及定性18 3-4觸媒活化以及反應實驗步驟19 3-5 X光繞射儀(XRD)20 3-6熱重分析儀22 3-7自動化學吸脫附儀23 3-8-1氫氣程溫還原(Hydrogen Temperature Programmed Reduction, H2-TPR)24 3-8-2氨氣/二氧化碳程序升溫脫附(NH3/CO2-TPD)25 3-8-3一氧化碳脈衝化學吸附 (CO pulse chemisorption)26 3-9高解析穿透式電子顯微鏡(HR-TEM)27 3-10傅立葉轉換紅外光譜儀 (FTIR)28 3-11化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA)30 3-12元素分析儀 (Elemental Analyzer)31 3-13高解析感應耦合電漿質譜分析儀(ICP-MS)32 3-14 X射線吸收光譜33 3-15氮氣恆溫吸脫附儀34 3-16氣相層析儀36 第四章 結果與討論37 4-1水滑石前驅物晶體結構37 4-2熱重分析結果40 4-3氫氣程溫還原結果41 4-4活化觸媒後晶體結構分析42 4-5X光吸收光譜45 4-6X光射線光電子能譜分析47 4-7觸媒孔洞性、形貌以及元素組成49 4-8一氧化碳脈衝吸附53 4-9觸媒固體酸鹼性鑑定56 4-10紅外線吡啶吸收光譜58 4-11紅外線二氧化碳吸收光譜60 4-12觸媒於γ-戊內酯(GVL)氫化反應性測試63 4-13觸媒對於γ-戊內酯氫化至戊二醇之活化能計算65 4-14觸媒重複性以及失活測試67 4-15γ-戊內酯氫化為1,4-戊二醇機制推測70 4-16以乙醯丙酸作為反應物的反應結果71 第五章 結論72 參考文獻73

    1. Cantero, D. A.; Bermejo, M. D.; Cocero, M. J. J. C., Governing chemistry of cellulose hydrolysis in supercritical water. ChemSusChem 2015, 8 (6), 1026-1033.
    2. Hammerer, F.; Loots, L.; Do, J. L.; Therien, J. D.; Nickels, C. W.; Friščić, T.; Auclair, K. J. A. C., Solvent‐free enzyme activity: quick, high‐yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angewandte Chemie 2018, 130 (10), 2651-2654.
    3. Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. J. G. C., Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry 2013, 15 (3), 584-595.
    4. Li, T.; Lin, H.; Ouyang, X.; Qiu, X.; Wan, Z.; Ruan, T. J. F., Impact of nitrogen species and content on the catalytic activity to C–O bond cleavage of lignin over N-doped carbon supported Ru-based catalyst. Fuel 2020, 278, 118324.
    5. Han, X.; Li, C.; Guo, Y.; Liu, X.; Zhang, Y.; Wang, Y. J. A. C. A. G., N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Applied Catalysis A: General 2016, 526, 1-8.
    6. Yan, K.; Yang, Y.; Chai, J.; Lu, Y. J. A. C. B. E., Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Applied Catalysis B 2015, 179, 292-304.
    7. Stadler, B. M.; Brandt, A.; Kux, A.; Beck, H.; de Vries, J. G. J. C., Properties of Novel Polyesters Made from Renewable 1, 4‐Pentanediol. ChemSusChem 2020, 13 (3), 556-563.
    8. Shao, Y.; Ba, S.; Sun, K.; Gao, G.; Fan, M.; Wang, J.; Fan, H.; Zhang, L.; Hu, X. J. C. E. J., Selective production of γ-valerolactone or 1, 4-pentanediol from levulinic acid/esters over Co-based catalyst: Importance of the synergy of hydrogenation sites and acidic sites. Chemical Engineering Journal 2022, 429, 132433.
    9. Gao, X.; Zhu, S.; Dong, M.; Fan, W. J. J. o. C., MOF-derived hcp-Co nanoparticles encapsulated in ultrathin graphene for carboxylic acids hydrogenation to alcohols. Journal of Catalysis 2021, 399, 201-211.
    10. Du, X.-L.; Bi, Q.-Y.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. J. G. C., Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1, 4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry 2012, 14 (4), 935-939.
    11. ZHAI, X.-j.; Chuang, L.; Xin, D.; YIN, D.-d.; LIANG, C.-h. J. J. o. F. C.; Technology, Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD. Journal of Fuel Chemistry and Technology 2017, 45 (5), 537-546.
    12. Xu, Q.; Li, X.; Pan, T.; Yu, C.; Deng, J.; Guo, Q.; Fu, Y. J. G. C., Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry 2016, 18 (5), 1287-1294.
    13. Wu, J.; Gao, G.; Sun, P.; Long, X.; Li, F. J. A. C., Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters. ACS Catalysis 2017, 7 (11), 7890-7901.
    14. Fan, M.; Shao, Y.; Sun, K.; Li, Q.; Zhang, S.; Wang, Y.; Xiang, J.; Hu, S.; Wang, S.; Hu, X. J. M. C., Switching production of γ-valerolactone and 1, 4-pentanediol from ethyl levulinate via tailoring alkaline sites of CuMg catalyst and hydrogen solubility in reaction medium. Molecular Catalysis 2021, 510, 111680.
    15. Karanwal, N.; Sibi, M. G.; Khan, M. K.; Myint, A. A.; Chan Ryu, B.; Kang, J. W.; Kim, J. J. A. C., Trimetallic Cu–Ni–Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1, 4-Pentanediol under Mild Conditions in an Aqueous Medium. ACS Catalysis 2021, 11 (5), 2846-2864.
    16. Shao, Y.; Sun, K.; Li, Q.; Liu, Q.; Zhang, S.; Liu, Q.; Hu, G.; Hu, X. J. G. C., Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1, 4-pentanediol. Green Chemistry 2019, 21 (16), 4499-4511.
    17. Wu, J.; Gao, G.; Li, Y.; Sun, P.; Wang, J.; Li, F. J. A. C. B. E., Highly chemoselective hydrogenation of lactone to diol over efficient copper-based bifunctional nanocatalysts. Applied Catalysis B: Environmental 2019, 245, 251-261.
    18. Cavuoto, D.; Ravasio, N.; Scotti, N.; Gervasini, A.; Campisi, S.; Marelli, M.; Cappelletti, G.; Zaccheria, F. J. M. C., A green solvent diverts the hydrogenation of γ–valerolactone to 1, 4-pentandiol over Cu/SiO2. Molecular Catalysis 2021, 516, 111936.
    19. Deng, T.; Yan, L.; Li, X.; Fu, Y. J. C., Continuous Hydrogenation of Ethyl Levulinate to 1, 4‐Pentanediol over 2.8 Cu‐3.5 Fe/SBA‐15 Catalyst at Low Loading: The Effect of Fe Doping. ChemSusChem 2019, 12 (16), 3837-3848.
    20. Wang, L.; Yang, Y.; Yin, P.; Ren, Z.; Liu, W.; Tian, Z.; Zhang, Y.; Xu, E.; Yin, J.; Wei, M. J. A. A. M.; Interfaces, MoO x-Decorated Co-Based Catalysts toward the Hydrodeoxygenation Reaction of Biomass-Derived Platform Molecules. ACS Applied Materials & Interfaces 2021, 13 (27), 31799-31807.
    21. Obalová, L.; Karásková, K.; Jirátová, K.; Kovanda, F. J. A. C. B. E., Effect of potassium in calcined Co–Mn–Al layered double hydroxide on the catalytic decomposition of N2O. Applied Catalysis B: Environmental 2009, 90 (1-2), 132-140.
    22. Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. J. C. S.; Technology, Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catalysis Science & Technology 2017, 7 (8), 1622-1645.
    23. Cao, Y.; Zhang, H.; Dong, J.; Ma, Y.; Sun, H.; Niu, L.; Lan, X.; Cao, L.; Bai, G. J. M. C., A stable nickel-based catalyst derived from layered double hydroxide for selective hydrogenation of benzonitrile. Molecular Catalysis 2019, 475, 110452.
    24. Prinetto, F.; Ghiotti, G.; Graffin, P.; Tichit, D. J. M.; Materials, M., Synthesis and characterization of sol–gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous and Mesoporous Materials 2000, 39 (1-2), 229-247.
    25. Benito, P.; Guinea, I.; Labajos, F.; Rocha, J.; Rives, V. J. M.; Materials, M., Microwave-hydrothermally aged Zn, Al hydrotalcite-like compounds: Influence of the composition and the irradiation conditions. Microporous and Mesoporous Materials 2008, 110 (2-3), 292-302.
    26. Zhou, D.; Zhang, Q.; Wang, S.; Jia, Y.; Liu, W.; Duan, H.; Sun, X. J. I. C., Hollow-structured layered double hydroxide: structure evolution induced by gradient composition. Inorganic Chemistry 2020, 59 (3), 1804-1809.
    27. Sikander, U.; Sufian, S.; Salam, M. J. I. j. o. h. e., A review of hydrotalcite based catalysts for hydrogen production systems. International journal of hydrogen energy 2017, 42 (31), 19851-19868.
    28. Jayaprakash, S.; Dewangan, N.; Jangam, A.; Das, S.; Kawi, S. J. I. J. o. H. E., LDH-derived Ni–MgO–Al2O3 catalysts for hydrogen-rich syngas production via steam reforming of biomass tar model: Effect of catalyst synthesis methods. 2021, 46 (35), 18338-18352.
    29. Delidovich, I.; Palkovits, R. J. J. o. C., Structure–performance correlations of Mg–Al hydrotalcite catalysts for the isomerization of glucose into fructose. Journal of Catalysis 2015, 327, 1-9.
    30. Du, Y.; Wang, Q.; Liang, X.; He, Y.; Feng, J.; Li, D. J. J. o. C., Hydrotalcite-like MgMnTi non-precious-metal catalyst for solvent-free selective oxidation of alcohols. 2015, 331, 154-161.
    31. Xu, M.; Wei, M. J. A. F. M., Layered double hydroxide‐based catalysts: recent advances in preparation, structure, and applications. Advanced Functional Materials 2018, 28 (47), 1802943.
    32. Chen, H.; He, S.; Xu, M.; Wei, M.; Evans, D. G.; Duan, X. J. A. C., Promoted synergic catalysis between metal Ni and acid–base sites toward oxidant-free dehydrogenation of alcohols. ACS Catalysis 2017, 7 (4), 2735-2743.
    33. Li, C.; Chen, Y.; Zhang, S.; Zhou, J.; Wang, F.; He, S.; Wei, M.; Evans, D. G.; Duan, X. J. C., Nickel–gallium intermetallic nanocrystal catalysts in the semihydrogenation of phenylacetylene. ChemCatChem 2014, 6 (3), 824-831.
    34. Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. J. N. c., Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry 2014, 6 (4), 320-324.
    35. García-Trenco, A. s.; White, E. R.; Regoutz, A.; Payne, D. J.; Shaffer, M. S.; Williams, C. K. J. A. C., Pd2Ga-based colloids as highly active catalysts for the hydrogenation of CO2 to methanol. 2017, 7 (2), 1186-1196.
    36. Kim, S. M.; Abdala, P. M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. J. J. o. t. A. c. S., Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. 2017, 139 (5), 1937-1949.
    37. Nikolla, E.; Schwank, J.; Linic, S. J. J. o. C., Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry. 2009, 263 (2), 220-227.
    38. Ning, X.; An, Z.; He, J. J. J. o. c., Remarkably efficient CoGa catalyst with uniformly dispersed and trapped structure for ethanol and higher alcohol synthesis from syngas. 2016, 340, 236-247.
    39. Jin, X.; Zhao, M.; Zeng, C.; Yan, W.; Song, Z.; Thapa, P. S.; Subramaniam, B.; Chaudhari, R. V. J. A. C., Oxidation of glycerol to dicarboxylic acids using cobalt catalysts. ACS Catalysis 2016, 6 (7), 4576-4583.
    40. Du, Y.; Jin, Q.; Feng, J.; Zhang, N.; He, Y.; Li, D. J. C. S.; Technology, Flower-like Au/Ni–Al hydrotalcite with hierarchical pore structure as a multifunctional catalyst for catalytic oxidation of alcohol. Catalysis Science & Technology 2015, 5 (6), 3216-3225.
    41. Perret, N.; Grigoropoulos, A.; Zanella, M.; Manning, T. D.; Claridge, J. B.; Rosseinsky, M. J. J. C., Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5‐Hydroxymethylfurfural in Water. ChemSusChem 2016, 9 (5), 521-531.
    42. Wu, J.; Gao, G.; Li, J.; Sun, P.; Long, X.; Li, F. J. A. C. B. E., Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural. Applied Catalysis B: Environmental 2017, 203, 227-236.
    43. Li, W.; Fan, G.; Yang, L.; Li, F. J. C., Highly Efficient Vapor‐Phase Hydrogenation of Biomass‐Derived Levulinic Acid Over Structured Nanowall‐Like Nickel‐Based Catalyst. ChemCatChem 2016, 8 (16), 2724-2733.
    44. Guo, X.; Li, Y.; Song, W.; Shen, W. J. C. l., Glycerol hydrogenolysis over Co catalysts derived from a layered double hydroxide precursor. Catalysis letters 2011, 141 (10), 1458-1463.
    45. Yan, K.; Wu, X.; An, X.; Xie, X. J. C. E. C., Facile synthesis of reusable CoAl-hydrotalcite catalyst for dehydration of biomass-derived fructose into platform chemical 5-hydroxymethylfurfural. Chemical Engineering Communications 2014, 201 (4), 456-465.
    46. Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. J. E.; science, e., Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science 2016, 9 (4), 1144-1189.
    47. Manikandan, M.; Venugopal, A. K.; Prabu, K.; Jha, R. K.; Thirumalaiswamy, R. J. J. o. M. C. A. C., Role of surface synergistic effect on the performance of Ni-based hydrotalcite catalyst for highly efficient hydrogenation of furfural. 2016, 417, 153-162.
    48. Su, H.; Zhang, K.-X.; Zhang, B.; Wang, H.-H.; Yu, Q.-Y.; Li, X.-H.; Antonietti, M.; Chen, J.-S. J. J. o. t. A. C. S., Activating cobalt nanoparticles via the Mott–Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. Journal of the American Chemical Society 2017, 139 (2), 811-818.
    49. Xu, Y.; Liu, Y.; Cui, P.; Shang, N.; Wang, C.; Gao, Y. J. A. C. A. G., Stable Ni catalyst encapsulated in N-doped carbon nanotubes for one-pot reductive amination of nitroarenes with aldehydes. Applied Catalysis A: General 2021, 622, 118230.
    50. Li, D.; Zhang, J.; Liu, Y.; Yuan, H.; Chen, Y. J. C. E. S., Boron doped magnetic catalysts for selective transfer hydrogenation of furfural into furfuryl alcohol. Chemical Engineering Science 2021, 229, 116075.
    51. Cao, Y.; Yu, H.; Tan, J.; Peng, F.; Wang, H.; Li, J.; Zheng, W.; Wong, N.-B. J. C., Nitrogen-, phosphorous-and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 2013, 57, 433-442.
    52. Louisia, S.; Contreras, R. C.; Heitzmann, M.; Axet, M. R.; Jacques, P.-A.; Serp, P. J. C. C., Sequential catalytic growth of sulfur-doped carbon nanotubes and their use as catalyst support. Catalysis Communications 2018, 109, 65-70.
    53. Hu, X.; Fan, M.; Zhu, Y.; Zhu, Q.; Song, Q.; Dong, Z. J. G. C., Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols. Green Chemistry 2019, 21 (19), 5274-5283.
    54. Cao, Y.; Mao, S.; Li, M.; Chen, Y.; Wang, Y. J. A. C., Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catalysis 2017, 7 (12), 8090-8112.
    55. Nie, R.; Peng, X.; Zhang, H.; Yu, X.; Lu, X.; Zhou, D.; Xia, Q. J. C. S.; Technology, Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. 2017, 7 (3), 627-634.
    56. Li, T.; Lin, H.; Ouyang, X.; Qiu, X.; Wan, Z. J. A. C., In situ preparation of Ru@ N-doped carbon catalyst for the hydrogenolysis of lignin to produce aromatic monomers. 2019, 9 (7), 5828-5836.
    57. Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. J. A. a. m.; interfaces, g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Applied Materials & Interfaces 2018, 10 (3), 2667-2678.
    58. Sun, D.; Chi, D.; Yang, Z.; Xing, Z.; Yin, J.; Li, Z.; Zhu, Q.; Zhou, W. J. I. J. o. H. E., Mesoporous g-C3N4/Zn–Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts. International Journal of Hydrogen Energy 2019, 44 (31), 16348-16358.
    59. Santos, R.; Tronto, J.; Briois, V.; Santilli, C. J. J. o. M. C. A., Thermal decomposition and recovery properties of ZnAl–CO 3 layered double hydroxide for anionic dye adsorption: insight into the aggregative nucleation and growth mechanism of the LDH memory effect. Journal of Materials Chemistry A 2017, 5 (20), 9998-10009.
    60. Ahmed, A. A. A.; Talib, Z. A.; bin Hussein, M. Z. J. A. C. S., Thermal, optical and dielectric properties of Zn–Al layered double hydroxide. Applied Clay Science 2012, 56, 68-76.
    61. Di Fronzo, A.; Pirola, C.; Comazzi, A.; Galli, F.; Bianchi, C.; Di Michele, A.; Vivani, R.; Nocchetti, M.; Bastianini, M.; Boffito, D. J. F., Co-based hydrotalcites as new catalysts for the Fischer–Tropsch synthesis process. Fuel 2014, 119, 62-69.
    62. Wang, L.; Zhang, W.; Zheng, X.; Chen, Y.; Wu, W.; Qiu, J.; Zhao, X.; Zhao, X.; Dai, Y.; Zeng, J. J. N. E., Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nature Energy 2017, 2 (11), 869-876.
    63. Zhang, L.; Xiong, J.; Qin, Y.-H.; Wang, C.-W. J. C., Porous N–C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery. Carbon 2019, 150, 475-484.
    64. Emeis, C. J. J. o. C., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis 1993, 141 (2), 347-354.
    65. Li, P.; Liu, W.; Dennis, J. S.; Zeng, H. C. J. A. a. m.; interfaces, Synthetic architecture of MgO/C nanocomposite from hierarchical-structured coordination polymer toward enhanced CO2 capture. ACS Applied Materials & Interfaces 2017, 9 (11), 9592-9602.
    66. Janssens, W.; Makshina, E. V.; Vanelderen, P.; De Clippel, F.; Houthoofd, K.; Kerkhofs, S.; Martens, J. A.; Jacobs, P. A.; Sels, B. F. J. C., Ternary Ag/MgO‐SiO2 Catalysts for the Conversion of Ethanol into Butadiene. ChemSusChem 2015, 8 (6), 994-1008.
    67. Shylesh, S.; Gokhale, A. A.; Scown, C. D.; Kim, D.; Ho, C. R.; Bell, A. T. J. C., From sugars to wheels: The conversion of ethanol to 1, 3‐butadiene over metal‐promoted magnesia‐silicate catalysts. ChemSusChem 2016, 9 (12), 1462-1472.
    68. Ngo, D. T.; Sooknoi, T.; Resasco, D. E. J. A. C. B. E., Improving stability of cyclopentanone aldol condensation MgO-based catalysts by surface hydrophobization with organosilanes. Applied Catalysis B: Environmental 2018, 237, 835-843.

    下載圖示
    2023-08-01公開
    QR CODE