| 研究生: |
陳婉慈 Chen, Wan-Tzu |
|---|---|
| 論文名稱: |
半導體封裝黏膠厚度個案分析 Bond Line Thickness Case Analysis in Semiconductor Assembly |
| 指導教授: |
蔡明田
Tsai, Ming-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 銲晶製程 、黏膠 、導線架 、黏膠厚度 |
| 外文關鍵詞: | Die attach, glue, leadframe, Bond Line Thickness |
| 相關次數: | 點閱:61 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體的製造流程及工序極其複雜,且對技術、精度、品質都有極高的要求。從產業鏈的上中下游,可以將半導體IC製程分成三大區塊:設計、製造、封裝及測試。IC設計主要是負責規劃晶體上每個區塊的功能,產生改晶體的設計圖,接著就會到IC製造,歷經上百道工序將晶圓製造出來,再送到封裝測試廠,進行晶圓切割、封裝及測試。
在封裝製程中,銲晶站點是封裝前段生產的第一站,製程是將晶體黏在導線架上。黏膠的厚度對產品有著極深的影響,黏膠厚度太薄在高溫烘烤固化黏膠時可能會黏合不良導致晶體剝離,太厚可能會導致散熱不佳,導致最終產品過熱不良。黏膠過厚也會影響銲線製程的銲線高度,導致銲線弧度不良,或是封裝時壓壞銲線,因此定義合理的黏膠厚度管制界限對製程可靠度非常重要。
在銲晶製程中用到的直接材料包含晶體、黏膠及導線架,本研究以實驗設計的方式,蒐集現有產品的產品其晶體面積、使用的導線架種類、黏膠種類,並量測黏膠厚度(BLT),透過確認量測系統、以統計的方式探討產品種類、材料種類的差異對黏晶厚度是否有影響、應該如何定義管制界線以確保產品品質。
本研究結果顯示,個案中使用到的黏膠黏度不會影響BLT數值,然而導線架的種類及材質則會對BLT數值產生影響,因此在制定管制界限時,需考量到直接材料的差異,仔細的分析後再給出合適的管制界限。
The manufacturing process and procedures of semiconductors are extremely complex, with high demands on technology, precision, and quality. From the upstream to downstream of the industry chain, the semiconductor IC manufacturing process can be divided into three main parts: IC design, IC manufacturing, assembling and testing.
IC design is mainly responsible for planning the functions of each block on the die, generating the design drawings for the die, and then moving on to IC manufacturing. After going through hundreds of processes, the wafer is manufactured and then sent to the assembling and testing factory for wafer grinding, sawing, assembling and testing.
In the assembly process, the die bonding or called die attach station is the first station in the early stage of packaging production, where the process involves bonding the die onto the leadframe. The thickness of the adhesive has a profound impact on the product. If the adhesive thickness is too thin, poor adhesion may occur during high-temperature baking and curing, leading to die delamination. If it's too thick, it may cause poor heat dissipation, resulting in overheating of the final product. Excessive adhesive thickness can also affect the wire bonding process, causing improper wire bond height or wire damage during molding process. Therefore, defining reasonable limits for adhesive thickness control is crucial for reliability.
The direct materials used in the die attach process include die, glue, and leadframes. In this study, through design of experiments, collected the data of product types, die area, leadframe types, glue types, and Bond Line Thickness (BLT) values. By confirming the measurement system and statistically exploring the differences in product types and material types to see if they affect the Bond Line Thickness and how to define proper The results of this study show that the viscosity of the glue used in the case does not affect the BLT value. However, the type and material of the leadframe do affect the BLT value. When setting control limits, differences in direct materials must be considered, and appropriate control limits should be determined after careful analysis.
一、 外文部分(依作者姓名開頭字母排列)
1. G Omar1; M T Asmah (2022). Correlation between Surface Texturing on Pre-Plated Leadframe and Delamination Phenomenon in Automotive Packaging。International Journal of Nanoelectronics and Materials.
2. Khoo Ly Hoon; Au Yin Kheng (2009). In-Depth Characterization of Die Attach Adhesive for Low-K Automotive Device Application. 2009 11th Electronics Packaging Technology Conference.
3. Mu-Chun Wang; Kuo-Shu Huang; Zhen-Ying Hsieh; Hsin-Chia Yang; Chuan-Hsi Liu; Chii-Ruey Lin(2010). Performance of silver-glue attachment technology in assembly. 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging.
4. Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look at the robustness and Type II error properties of the t test to departures from population normality. Psychological Bulletin, 111(2), 352–360. https://doi.org/10.1037/0033-2909.111.2.352
5. Tanatpol Nanthavittayaporn, Kessararat Ugsornrat, Don Klaitabtim ,Pirapat Buathong (2018). Optimization Parameters of Installation Automatic Die Bonding Machine for Integrated Circuit Packaging. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).
二、 中文部分(依作者姓名筆劃排列)
1. 張國棟(2024)。品質趨勢統計製程管制(SPC)實務訓練。IATF16949五大核心工具實務操作訓練班。金屬工業研究發展中心。
三、 網路部分
6. SEMI全球半導體產業協會(2022)。半導體是什麼?晶片產業一次看懂。https://www.semi.org/zh/technology-trends/what-is-a-semiconductor。最後瀏覽日:2023年10月9日。
7. Semiconductor Industry Association(2023)。What is a Semiconductor。https://www.semiconductors.org/semiconductors-101/what-is-a-semiconductor/。最後瀏覽日:2023年10月9日。
8. 陳靖函(2020)。經濟部產業技術司。半導體用光阻劑之發展概況。https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=322。最後瀏覽日:2023年10月9日。
9. Semiconductor Digest(2000)。Die Attach。https://sst.semiconductor-digest.com/2000/03/die-attach/。最後瀏覽日: 2024年1月10日
10. 富果直送(2023)。【產業報告】導線架是什麼?位列三大「半導體封裝」原料之一。https://blog.fugle.tw/lead-frame/。最後瀏覽日: 2024年1月8日
11. Bruce Duncan (2010). Advances in Structural Adhesive Bonding. Developments in testing adhesive joints. https://www.sciencedirect.com/science/article/pii/B9781845694357500146。
12. 百容電子股份有限公司(2012)。半導體導線架-光電元件。https://www.ece.com.tw/zh-tw/lead-frame-of-semiconductors-for-photoelectric-products。最後瀏覽日: 2024年5月1日。
13. ASE(2023)。導線架封裝。https://ase.aseglobal.com/ch/leadframe-packaging/。最後瀏覽日: 2024年1月8日。
14. 長華科技股份有限公司(2022)。QFN。https://www.cwtcglobal.com/%E7%94%A2%E5%93%81%E8%B3%87%E8%A8%8A/ic-%E7%84%A1%E5%BC%95%E8%85%B3%E5%B0%8E%E7%B7%9A%E6%9E%B6/QFN。最後瀏覽日: 2024年1月8日。
15. 鄭祝鵬(2020)。SPC理念知識運用。https://mymkc.com/article/content/23303。最後瀏覽日: 2024年3月18日。