簡易檢索 / 詳目顯示

研究生: 柯誌欣
Ko, Chih-Hsin
論文名稱: 以有機金屬氣相磊晶與分子束磊晶法成長氮化物半導體及相關場效電晶體、光偵測器與發光二極體之研製
The Study of Nitride-based Materials and Its Related HFETs, Photodetectors, and LEDs Grown by Metalorganic Vapor Phase Epitaxy and Ammonia Molecular Beam Epitaxy
指導教授: 蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 235
中文關鍵詞: 氮化鎵發光二極體光偵測器場效電晶體分子束磊晶有機金屬氣相磊晶
外文關鍵詞: Photodetector, MOVPE, MBE, HFET, LED, GaN
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用有機金屬氣相磊晶(MOVPE)與分子束磊晶(MBE)法成長氮化物半導體,並利用氮化物半導體研製異質接面場效電晶體、光偵測器與藍光發光二極體。在有機金屬氣相磊晶成長方面,低溫成長的氮化鎵緩衝層表面型態影響隨後成長在其上的氮化物半導體薄膜的成長速率及品質,我們藉由即時反射率監控的分析,成長出低背景濃度(1.61016 cm-3)的氮化鎵薄膜,其電子遷移率為463 cm2/Vs,我們也利用此成長技術成功在其上成長高品質摻雜的n型、p型氮化鎵薄膜與三元氮化物半導體。薄膜材料中的缺陷(defect)也進一步被探討,而兩段式橫向磊晶成長法(ELOG)可用來有效降低氮化鎵薄膜的缺陷密度。
    關於研製氮化物元件部分,我們首先利用氮化鋁鎵與氮化鎵異質接面形成的二維電子雲(2DEG)與壓電效應(pizoelectric)製作場效電晶體。利用有機金屬法成長的電晶體,摻鎂(Mg)高阻抗絕緣層提供良好的電晶體關閉特性。我們也利用分子束磊晶法進一步成長製作出高品質的場效電晶體,研究中發現結合兩種成長技術優點,在有機金屬磊晶法成長的氮化鎵基板上利用分子束磊晶法成長出高品質的二維電子雲,其成長出的試片在1.2K時的電子遷移率高達14300 cm2/Vs。在光元件應用的部分,我們利用二維電子雲有高電子移動速度與高電子密度的特性,製作出在270nm波長照光下光響應率高達8.6106 A/W。利用同時雙摻雜技術與穿透層的應用,新穎的p-down InGaN/GaN量子井結構藍光二極體也被成功研製。

    In this dissertation, the growth and characterization of GaN epilayers have been systematically studied using in-situ reflectance and ex-situ measurements. We have also successfully fabricated the AlxGa1-xN/GaN 2DEG HFETs, photodetectors, n-down and p-down InxGa1-xN/GaN MQWs LEDs. In epitaxial layers growth, the morphology evolution of the initial low-temperature buffer layer strongly influences the structural and electrical quality of the high-temperature GaN epilayers. Moreover, by changing the nucleation temperatures, one can change the rate of the lateral growth and coalescence of a high temperature GaN layer. Through the optimization of the incubation period from 3D to 2D growth, good control of high quality undoped GaN epilayer with Hall mobility of 463 cm2/Vs and carrier concentration 1.61016 cm-3, respectively, can be obtained. The sequent growth of doped GaN and ternary III-nitride also can be controlled very well using same technique. In addition, the presence of donor-like defect-related states exist in the range of 1.48 to 2.33eV below the conduction band edge for the as deposited GaN films. For the epitaxially lateral overgrowth (ELOG), the effects of low temperature 3D-GaN buffer layer on the ELOG grown by MOVPE were studied.
    Photo-ehanced chemical wet etching rate on GaN films of different structural and electrical property was investigated in KOH and H3PO4 with various etch solution molarity. We also compared the dry etching and wet etching process and found that dry etching has ion-induced damages which deteriorate the electrical properties of devices. Moreover, the AlGaN/GaN 2DEG HFET was processed by PEC wet etching and the dc characteristics of saturated currents of 850 mA/mm and transconductances of 170 mS/mm for devices with a 0.5 m gate length were obtained.
    For AlxGa1-xN/GaN 2DEG heterostructure field effect transistor (HFET), a high quality AlGaN/GaN 2DEG heterostructure on a semi-insulating layer by using bis-cyclopentadienyly magnesium (Cp2Mg) doping process grown by MOVPE have successfully fabricated. The HFET devices show good cut-off characteristics of drain-current of 10-3 mA/mm at VD=10V and VG=5V. Gate leakage current of 10-4 mA/mm is also obtained. The ohmic contact on the high bandgap AlGaN and sheet carrier densities in 2DEG affected the dc and rf electrical properties in HFETs. Moreover, the ammonia-MBE growth technique has been studied. High quality AlGaN/GaN 2DEG epilayers and devices were successfully fabricated on sapphire and SiC substrates and we have also significantly improved surface smoothness, and consequently improved electrical characteristics on MOVPE template substrates by ammonia-MBE. In addition, photodetectors with 2DEG heterostructure have huge optical gain of 8.7106 A/W with an incident light wavelength of 270 nm. This can be explained using the conduction band diagram of 2DEG system and persistent photoconductivity (PPC) effect. For InxGa1-xN/GaN MQWs LEDs, a novel p-down blue LEDs were fabricated and compared with conventional n-down LEDs in this dissertation. The turn on voltage could be significantly reduced to less than 5V for the p-down LED with co-doped layer and tunnel layer. The output power was 1mW when the injection current was 20mA for the p-down LED with an Mg+Si co-doped interlayer and a rough p-tunnel layer.

    CHAPTER 1 Introduction 1.1 The Background of Research on III-V Nitrides……1 1.2 MOVPE and Ammonia-MBE Epitaxial Growth of III-V Nitrides……4 1.3 Overview of This Dissertation……6 References……9 CHAPTER 2 Growth and Characterization of Gallium Nitride Epilayers 2.1 The Reaction Chemistry of Metal Organic Vapor Phase Epitaxy (MOVPE)……14 2.2 In-situ Monitoring of the MOVPE Grown Nitride-based Epi-layers by Reflectance Measurements ……19 References……25 CHAPTER 3 Defects and Epitaxially Lateral Overgrowth (ELOG) of GaN 3.1 The Carrier Concentration and Hall Mobility of GaN Epilayers……46 3.2 Effects of Low Temperature Buffer on the Two-step Epitaxially Lateral Overgrowth (ELOG) of GaN by MOVPE……51 References……55 CHAPTER 4 Photo-Enhanced Chemical (PEC) Etching in Nitride- based Material 4.1 Influence of Different Quality for Photo-Enhanced Chemical Wet Etching……85 4.2 PEC Etching of AlGaN Epilayers……91 4.3 Schottky and HFET Devices Processed by Dry and PEC Wet Etching……92 References……95 CHAPTER 5 AlxGa1-xN/GaN 2DEG Heterostructure Field Effect Transistor (HFET) Grown by MOVPE and Ammonia MBE 5.1 Introduction of HFETs…….120 5.2 AlxGa1-xN/GaN 2DEG Structures HFET Grown by MOVPE……123 5.3 AlxGa1-xN/GaN 2DEG Structures HFET Grown by Ammonia-MBE……132 5.4 AlGaN/GaN 2DEG Grown by Ammonia-MBE on MOVPE GaN Template……134 References……137 CHAPTER 6 AlGaN/GaN 2DEG photodetectors and InGaN/GaN MQWs LED Devices 6.1 High Gain Photodetector of AlxGa1-xN/GaN 2DEG Structures……191 6.2 InGaN/GaN MQWs Light Emitting Diodes with n- and p-down Structures……196 References……203 CHAPTER 7 Conclusion and Future Prospect……228

    Chapter 1.
    [1] S. N. Mohammad, A. Salvador, and H. Morkoc, ”Emerging gallium nitride based devices”, Proc. IEEE, vol. 83, pp. 1306-1355, 1995.
    [2] H. Morkoc, in Proceedings of International Symposium on Blue Lasers and Light Emitting Diodes, Chiba University, Japan, March 5-7, 1996.
    [3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “ Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., vol.76, pp.1363-1398, 1994.
    [4] S. Strite and H. Morkoc, “GaN, AlN, and InN: A review”, J. Vac. Sci. Tech. B., vol.10, pp.1237-1266, 1992.
    [5] J. F. Schetzina, in International Symposium on Blue Lasers and Light emitting Diodes, Chiba University, Japan, March 5-7, 1996.
    [6] I. Akasaki and H. Amano, International Symposium on Blue Lasers and Light Emitting Diodes, Chiba University, Japan, March 5-7,1996.
    [7] M. E. Lin, S. Strite, and H. Morkoc, “The physical properties of AlN, GaN and InN”, in The Encyclopedia of Advanced Materials, eds. D. Bloor, M. C. Fleming, R. J. Brook, S. Mahajan, R. W. Cahn, pp. 79-96, Pergamon Press, 1994.
    [8] S. Nakamura, T. Mukai, and M. Semoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., vol.64, 1687, 1994.
    [9] S. Nakamura, T. Mukai, and M. Senoh, “ High-Power GaN P-N Junction Blue-Light-Emitting Diodes”, Jpn. J. Appl. Phys. vol.30, pp.L1998-2001, 1991.
    [10] S. Nakamura, M. Senoh, S. Magahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiooku, and Y. Sugimoto, “ InGaN-Based Multi-Quantum-Well Structure Laser Diodes”, Jpn. J. Appl. Phys., vol.35, pp.L74-76, 1996.
    [11] H. Tang, J. B. Webb, P. Coleridge, J. A. Bardwell, C. H. Ko, Y. K. Su, and S. J. Chang, “ Scattering lifetimes due to interface roughness with large lateral correlation length in AlxGa1-xN/GaN two-dimensional electron gas”, Phy. Rev. B, vol.66, pp.1-7, 2002.
    [12] Y. K. Su, S. J. Chang, C. H. Ko, J. F. Chen, T. M. Kuan, W. H. Lan, W. J. Lin, Y. T. Cherng, and J. Webb, “ InGaN/GaN Light Emitting Diodes With a p-Down Structure”, IEEE Trans. Electron Devices, vol. 49, pp.1361-1366, 2002.
    [13] C. H. Ko, Y. K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin, and J. Webb, ” P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diodes Structure Grown by Metal-Organic Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys., vol.41, pp.2489-2492, 2002.
    [14] W. C. Lai, S. J. Chang, J. K. Sheu, and J. F. Chen,
    “ InGaN/AlInGaN light emitting diodes”, IEEE Photon. Technol. Lett., vol.13, pp.559-561, 2001.
    [15] H. Morkoc: Beyond SiC! III-V nitride based heterostructures and devices, in SiC Materials and Devices, Semiconductors and Semimetals, Vol.52 (Academic, San Diego, CA 1998).
    [16] H. Morkoc, “Nitride Semiconductors and Devices”, 1999.
    [17] H. M. Manasevit, Appl. Phys. Lett., vol.12, pp.156, 1968.
    [18] H. M. Manasevit, and W. I. Simpson, Electronchem. Soc., vol.116, pp.1725, 1969.
    [19] H. M. Manasevit, and K. L. Hess, J. Electrochem. Soc., vol.126, pp.2031, 1979.
    [20] S. Yoshida, S. Misawa, and A. Itoh, “GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source”, Appl. Phys. Lett., vol.67, pp.1686, 1995.
    [21] S. Yoshida, S. Misawa, Y. Fuji, S. Tanaka, H. Hayakawa, S. Gonda, and A. Itoh, J. Vac. Sci. Tech. vol.16, pp.990, 1979.
    [22] S. Yoshida, S. Misawa, and S. Gonda, “ Properties of AlxGa1-xN films prepared by molecular beam epitaxy”, J. Appl. Phys., vol.53, pp.6844-6848, 1982.
    [23] S. Yoshida, S. Misawa, and S. Gonda, “ Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates”, Appl. Phys. Lett., vol.42, pp.427-429, 1983.
    [24] S. Yoshida, S. Misawa, and S. Gonda, “ Epitaxial growth of GaN/AlN heterostructures”, J. Vac. Sci. Tech. B., vol.1, pp.250-253, 1983.
    [25] R. C. Powell, N. E. Lee, and J. E. Greene, “ Growth of GaN(0001) 1×1 on Al2O3(0001) by gas-source molecular beam epitaxy”, Appl. Phys. Lett., vol.60, pp.2505-2507, 1992.
    [26] Z. Yang, L. K. Li, and W. I. Wang, Appl. Phys. Lett., vol.67, pp.1686-1688, 1995.
    [27] Y. Moriyasu, H. Goto, N. Kuze, and M. Matsui, J. Cryst. Growth., vol.150, pp.916, 1995.
    [28] W. Kim, O. Aktas, A. E. Botchkarev, A. Salvador, S. N.
    Mohammad, and H. Morkoc, “ Reactive molecular beam epitaxy of wurtzite GaN: Materials characteristics and growth kinetics”, J. Appl. Phys., vol.79, pp.7657-7666, 1996.
    [29] M. Kamp, M. Mayer, A. Pelzmann, A. Thies, H. Y. Chung, H. Sternschulte, O. Marti, and K. J. Ebeling, Mat. Res. Soc. Symp. Proc., 395, pp.135,1996.
    [30] M. Kamp, M. Mayer, A. Pelzmann, and K. J. Ebeling, Mat. Res. Soc. Symp. Proc., 449, pp.161, 1997.
    [31] N. Grandjean, J. Massies, P. Vennegues, M. Laugt, and M. Leroux,” Epitaxial relationships between GaN and Al2O3(0001) substrates”, Appl. Phys. Lett., vol.70, pp.643-645, 1997.
    [32] N. Grandjean, M. Laugt, M. Leroux, and J. Massies, “ Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers”, Appl. Phys. Lett., vol.71, pp.240-242, 1997.
    [33] N. Grandjean, J. Massies, P. Vennegues, and M. Leroux,
    “ Molecular-beam epitaxy of gallium nitride on (0001) sapphire sunstrates using ammonia”, J. Appl. Phys., vol.83, pp.1379-1383, 1998.
    [34] O. Aktas, W. Kim, Z. Fan, A. Botchkorev, A. Salvador, S. N. Mohammad, B. Sverdlov, and H. Morkoc, “ High transconductance normally-off GaN MODFETs”, Electron. Lett., vol.31, pp.1389-1390, 1995.
    [35] T. J. Schmidt, W. Shan, J. J. Song, A. A. Salvador, W. Kim, O. Atakas, A. Botchkarev, and H. Morkoc, “ Room-temperature stimulated emission in GaN/AlGaN separate confinement heterostructures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol.68, pp.1820-1822, 1996.

    Chapter 2
    [1] J. S. Yuan, C. C. Hsu, R. M. Cohen, and G. B. Stringfellow,“ Organometallic vapor phase epitaxial growth of AlGaInP”, J. Appl.Phys., vo.57, pp.1380-1383, 1985.
    [2] A. Thon, and T. F. Kuech, Mat. Res. Soc., vol.97, 1996.
    [3] G. E. Coates, M. L. H. Green, P. Powell, and K. Wade, Principles of Organometallic Chemistry, Methuen, London.
    [4] T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, J. Electron. Mat., vol.21, pp.157,1992.
    [5] S.Nakamura, “Analysis of Real-Time Monitoring Using Inter- ference”, Jpn. J. Appl. Phys., vol.30, pp.1348-1353, 1991.
    [6] S. Nakamura, “ In Situ Monitoring of GaN Growth Using Inter-ference Effects”, Jpn. J. Appl. Phys. vol.30, pp.1620-1627, 1991.
    [7] R. F. Karlicek, M. Schurman, C. Tran, T. Salagaj, Y. Li, and R. A.Stoll, III-V Rev., vol.10, pp.20, 1997.
    [8] T. B. Ng, J. Han, R. M. Biefeld, M. V. Weckwerth. J. Electron. Mater., vol.27, pp.190, 1998.
    [9] M. Luenenbuerger, H. Protzmann, M. Heuken, H. Juergensen, Proc. EW-MOVPE VIII, pp341, 1999.
    [10] O. Briot, J. Alexis, B. Gil, and R. Aulombard. Mat. Res. Soc. Symp. Proc., vol.395, pp.207, 1996.
    [11] O. Briot, J. Alexis, M. Tchounkeu, and R. Aulombard. Mat. Sic. Eng. B., vol.43, pp.147, 1996.
    [12] K. Doverspike, L. Rowland, D. Gaskill, and J. Freitas. J. Electron. Mater., vol.24, pp.269, 1995.
    [13] D. Gaskill, A. Wickenden, K. Doverspike, B. Tadayon, and L. Rowland. J. Electron. Mater., vol.24, pp.1525, 1995.
    [14] J. Kuznia, M. Khan, D. Olson, R. Kaplan, and J. Freitas. “ Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates”, J. Appl. Phys., vol.73, pp. 4700-4702, 1993.
    [15] S. Nakamura. “ GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., vol.30, pp.L1705-1707, 1991.
    [16] A. Wickenden, D. Wickenden, and T. Kistenmacher, “ The effect of thermal annealing on GaN nucleation layers deposited on (0001) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys., vol.75, pp.5367-5371, 1994.
    [17] A. Wickenden, D. Wickenden, T. Kistenmacher, S. Ecelberger, and T. Poehler. Mat. Phys. Lett., vol.65, pp.2024, 1994.
    [18] B. Beaumont and P. Gilbart. In B. Gil and R. L. Aulombard, editors, Semiconductor heteroepitaxy, pp. 258. World Scientific, 1995.
    [19] A. Thompson, C. Yuan, A. Gurary, R. Stall, and N. Schumaker. In B. Gil and R. L. Aulombard, eds, Semiconductor Heteroepitaxy, pp.266. World Scientific, 1995.
    [20] J. Han, T.-B. Ng, R. M. Biefeld, M. H. Crawford and D. M.Follstaedt, “ The effect of H2 on morphology evolution during GaN metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol.71,pp.3114-3116, 1997.
    [21] B. Heying, X. H. Wu, S. Keller, Y. Li. D. Kapolnek, B. P. Keller, S.P. DenBaars, and J. S. Speck, “ Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., vol.68, pp.643-645, 1996.
    [22] Jacques I. Editor, and Theodore D. Moustakas, “ Gallium Nitride (GaN) I ”, 1998.

    Chapter 3
    [1] I. Akaski, H. Amano, M.Kito, and K. Hiramatsu, J. Lumin.
    “ Demonstration of a heterostructure field-effect laser for
    optoelectronic integration”, Appl. Phys. Lett., vol.58, pp.666-668,1991.
    [2] S. Nakamura, T. Mukai, and M. Senoh, “ Candela-class
    high-brightness InGaN/AlGaN double-heterostructure bule-light-emitting diodes”, Appl. Phys. Lett., vol.64, pp.1687-1689, 1994.
    [3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “ Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies” J. Appl. Phys., vol.76, pp.1363-1398, 1994.
    [4] C. V. Reddy, K. Balakrishnan, H. Okumura, S. Yoshida, “ The origin of persistent photoconductivity and its relationship with yellow luminescence in molecular beam epitaxy”, Appl. Phys. Lett., vol.73, pp.244-246, 1998.
    [5] M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasinghame, and L. F. Reitz, “ High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett., vol.60, pp.2917-2919, 1992.
    [6] P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowskr, A. Rogalski, and M. Razeghi, “ kinetics of photoconductivity in n-type GaN photodetector”, Appl. Phys. Lett., vol.67, pp.3792-3794, 1995.
    [7] J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Votchkarev, and H. Morkoc, “ Nature of Mg impurities in GaN”, Appl. Phys. Lett., vol.69, pp.1474-1476, 1996.
    [8] H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, “ Persistent photoconductivity in n-type GaN”, J. Appl. Phys., vol.82, pp.899-901, 1997.
    [9] G. Li, S. J. Chua, and W. Wang, Solid State Communications,vol.111, pp.659, 1999.
    [10] T. Ogino and M. Aoki, Jpn. J. Appl. Phys., vol.19, pp.2395, 1980.
    [11] C. H. Ko, S. J. Chang, Y, K. Su, W. H. Lan, J. F. Chen, T. M. Kung,Y. C. Huang, C. I. Chiang, J. Webb, and W. J. Lin,” On the carrier Concentration and Hall Mobility in GaN Epilayers”, Jpn, J. Appl.Phys., vol.41, pp.L226-228, 2002.
    [12] E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, Jr., M. Asif Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B., vol.51, pp.326, 1995.
    [13] J. Z. Li, J. Y. Lin, H. X. Jiang, M. A. Khan, and Q. Chen, “ Two-dimensional electron gas in AlGaN/GaN heterostructure”, J. Vac. Sci. Tech. B., vol.15, pp.1117-1120, 1997.
    [14] H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, Phys. Rev. B., vol.82, pp.899, 1997.
    [15] H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, Phys. Rev. B.,vol.56, pp.6942, 1997.
    [16] D. W. Jenkins and J. D. Dow, Phy. Rev. B., vol.39, pp.3317, 1989.
    [17] J. Neugebauer and C. G. Van de Walle, “ Gallium vacancies and yellow luminescence in GaN”, Appl. Phys. Lett., vol.69, pp.503-505, 1996.
    [18] C. H. Qiu and J. I. Pankove,” Deep levels and persistent photoconductivity in GaN thin films”, Appl. Phys. Lett., vol.70,pp.1983-1985, 1997.
    [19] S. Nakamura, T. Mukai and M. Senoh, “ Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., vol.64, pp.1687-1689, 1994.
    [20] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “ InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys.,vol.35, pp.L74-76, 1996.
    [21] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “ Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., vol.76, pp.1363-1398, 1994.
    [22] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, “ Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electron. Dev. Lett., vol.22, pp.460-462, 2001.
    [23] F.A. Ponce and D.P. Bour, Nature, vol.386, pp.351, 1997.
    [24] O.-H. Nam, T.S. Zheleva, M.D. Bremser, R.F. Davis, J. Electron Mater., vol.27, pp.23, 1998, and references therein. (Note that the {1 1 –2 n} facets are incorrectly labeled as {1 –1 0 1}.)
    [25] S. Nakamura, M. Senoh, S. Nagahama, N. Isawa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, H. Umemoto, M. Sano, K. Chocho, “ InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., vol.72, pp.211-213,1998.
    [26] H. Marchand, J.P. Ibbetson, P.T. Fini, P. Kozodoy, S. Keller, J.S. Speck, S.P. DenBaars, U.K. Mishra, MRS Internet J. Nitride Semicond., vol.3, 1998.
    [27] H. Marchand, X.H. Wu, J.P. Ibbetson, P.T. Fini, P. Kozodoy, S. Keller, J.S. Speck, S.P. DenBaars, U.K. Mishra, “ Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol.73, pp.747-749, 1998.
    [28] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “ Electrical characteriz-ation of GaN p-n junctions with and without threading disloc-ations”, Appl. Phys. Lett., vol.73, pp.975-977, 1998.
    [29] Y. Kato, S. Kitamura, K. Hiramatsu and N. Sawaki, J. Cryst.Growth, vol.144, pp.133, 1994.
    [30] O. H. Nam, M. D. Bremser, T. S. Zheleva and R. F. Davis,“ Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy”, Appl. Phys. Lett., vol.71,pp.2638-2640, 1997.
    [31] O. H. Nam, T. S. Zheleva, M. D. Bremser, D. B. Thomson and R. F.Davis, Mater. Res. Soc. Symp. Proc., vol.482, pp.301, 1998.
    [32] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy,S. P. DenBaars and U. K. Mishra, “ Anisotropic epitaxial lateral growth in GaN selective area epitaxy”, Appl. Phys. Lett., vol.71,pp.1204-1206, 1997.
    [33] J. Park, P. A. Grudowski, C. J. Eiting and R. D. Dupuis,“ Selective-area and lateral epitaxial overgrowth of III-N materials by metal organic chemical vapor deposition”, Appl. Phys. Lett., vol.73, pp.333-335, 1998.
    [34] Y. Kawaguchi, S. Nambu, H. Sone, T. Shibata, H. Matsushima, M. Yamaguchi, H. Miyake, K. Hiramatsu and N. Sawaki, “ Selective Area Growth of GaN Using Tungsten Mask by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., vol.37, pp.L845-848, 1998.
    [35] M. E. Coltrin, C. C. William, M. E. Bartram, J. Han, N. Missert, M. H. Crawford and A. G. Baca, MRS Internet J. Nitride Semicond. Res. 4S1, G6.9, 1999.
    [36] S.Kitamura, K. Hiramatsu and N. Sawaki, “ Fabrication of GaN Hexaginal Pyramids on Dot-Patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase pitaxy”, Jpn. J. Appl. Phys.,vol.34 , pp.L1184-1186, 1995.
    [37] R. Zhang, L. Zhang, D. M. Hansen, M. P. Boleslawski, K. L. Chen,D. Q. Lu, B. Shen, Y. D. Zheng and T. F. Kuech, MRS Internet J.Nitride Semicond. Res. 4s1, G4.5, 1999.
    [38] H. Machand, J. P. Ibbetson, P. T. Fini, X. H. Wu, S. Keller, S. P.DenBaars, J. S. Speck and U. K. Mishra, MRS Internet J. Nitride Semicond. Res. 4S1, G4.5, 1999.
    [39] T. Tanaka, K. Uchida, A. Watanabe and S. Minagawa, “ Selective growth of gallium nitride layers with a rectangular cross-sectional shape and stimulated emission from the optical waveguides observed by photopumping”, Appl. Phys. Lett., vol.68, pp.976-978,1996.
    [40] K. Tadatomo, Y. Ohcuhi, H. Okagawa, H. Itoh, H. Miyake and K. Hiramatsu, MRS Internet J. Nitride Semicond. Res. 4S1, G3.1, 1999.
    [41] B. Beaumont, S. Haffouz and P. Gilbart, “ Magnesium induced changes in the selective growth of GaN by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., vol.72, pp.921-923, 1998.
    [42] P. Kung, D. Walker, M. Hamilton, J. Diaz and M. Razeghi,“ Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrate”, Appl. Phys. Lett., vol.74, pp.570-572, 1999.
    [43] H. Miyake, A. Motogaito and K. Hiramatsu, “ Effects of Reactor Pressure on Epitaxial Lateral Overgrowth of GaN via Low-Pressure Metalorganic Vapor Phase”, Jpn. J. Appl. Phys., vol.38, pp.L1000-1002, 1999.
    [44] X. H. Wu, P. Fini, S. Keller, E. J. Tarsa, B. Heying, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “ Morphological and Structural Transitions in GaN Films Grown on Sapphire by Metal-Organic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol.35, pp.L1648-1651, 1996.
    [45] H. Lahrehe, P. Vennegues, B. Beaumont and P. Gibart, J. Cryst.Growth, vol.205, pp.245, 1999.

    Chapter 4
    [1] I. Adessida, A. Mahajan, E. Andideh, M. A. Kahn, D. T. Olson, and
    J. N. Kuznia, “ Reactive ion etching of gallium nitride in silicon
    tetrachloride plasmas”, Appl. Phys. Lett., vol.63, pp.2777-2779,
    1993.
    [2] S. J. Pearton, C. R. Abernathy, F. Ren, and J. R. Lothian, “ Dry and
    wet etching characteristics of InN, AlN, and GaN deposited by
    electron cyclotron resonance metalorganic molecular beam epitaxy”,
    J. Vac. Sci., Tech. A, vol.11, pp.1772-1775, 1993.
    [3] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, and D. J. Rieger,
    “ Inductively coupled plasma etching of GaN”, Appl. Phys. Lett.,
    vol.69, pp.1119-1121, 1996.
    [4] A. T. Ping, I. Adesida, and M. A. Khan, “ Study of chemically
    assisted ion beam etching of GaN using HCl gas”, Appl. Phys. Lett.,
    vol.67, pp.1250-1255, 1995.
    [5] J. R. Mileham, S. J. Perton, C. R. Abern athy, J. C. MacKenzie, and
    R. J. Shul, “ Wet chemical etching of AlN”, Appl. Phys. Lett., vol 67,
    pp.1119-1121, 1995.
    [6] Q. X. Guo, O. Kato, and A. Yoshida, “ Chemical Etching of Indium
    Nitride”, J. Electrochem. Soc., vol.139, pp.2008-2009, 1992.
    [7] J. R. Mileham, S. J. Perton, C. R. Abern athy, J. C. MacKenzie, and
    R. J. Shul, “ Patterning of AlN, InN, and GaN in KOH-based
    solution”, J. Vac. Sci. Tech. A, vol.14, pp.836-839, 1996.
    [8] J. I. Pankove, J. Electrochem. Soc., vol.119, pp.1118-1119, 1972.
    [9] M. S. Minsky, M. White, and E. L. Hu, “ Room-temperature
    photoenhanced wet etching of GaN”, Appl. Phys. Lett. vol.68,
    pp.1531-1533, 1996.
    [10] C. Youtsey, and I. Adesida, “ Smooth n-type GaN surfaces by
    photoenhanced wet etching”, Appl. Phys. Lett, vol.72, pp.560-562,
    1998.
    [11] S. S. Kocha, M. W. Peterson, D. J.Arent, and J. M. Redeing,
    “ Displacement of the bandedges of GaInP2 in Aqueous
    Electrolytes Induced ny Surface Modification”, J. Electrochem.
    Soc., vol.142, pp.2625-2630, 1995
    [12] I. M. Huygens, K. Strubbe, and W. P. Gomes, “ Electrochemistry
    and ohotoetching of n-GaN”, J. Electrochem. Soc., vol.147,
    pp.1797-1802, 2000.
    [13] C. Youtsey, L. T. Romano, and I. Adesida, “ Gallium nitride
    whiskers formed by selective photoenhanced wet etching of
    dislocation”, Appl. Phys. Lett., vol. 73, pp.797-799, 1998.
    [14] D. A. Stocker, E. F. Schubert, and J. M. Redwing,
    “ Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett.,
    vol.73, pp.2654-2656, 1998.
    [15] R. Khare, and E. L. Hu, “ Dopant Selective Photoelectrochemical
    Etching of GaAs Homestructures”, J. Electrochem. Soc., vol.138,
    pp.1516, 1991.
    [16] S. C. Binari, L. B. Rowland, G. Kelner, W. Kruppa, H. B. Dietrich,
    K. Doverspike, and D. K. Gaskill, compound Semiconductor 1994,
    eds. H. Goronkin and U. Mishra, (IOP Publishing, Bristol, 1995),
    pp.459
    [17] S. M. Sze, ed., High-speed semiconductor devices (John Wiley &
    Sons, New Youk, 1990, Chapter4.
    [18] Y. Wu, W. Jiang, R. Keller, S. Keller, and D. Kapolnek, abstracts of
    Topical Workshop on Ⅲ-Ⅴ Nirides, 1995
    [19] J. S. Foresi, and T. D. Moustakas, “ Metal contacts to gallium
    nitride”, Appl. Phys. Lett. vol.62, pp.2859-2861, 1993
    [20] Seikoh Yoshida, J. Crystal Growth, vol.181, pp.293-296, 1997.

    Chapter 5
    [1] Y. Ayalsi, Microwave J. vol.25, pp.719-723,1982.
    [2] A. Gropinath and J. Rankin, IEEE Trans. Electron Devices, vol.32,
    pp.1272-1278, 1985.
    [3] A. Gropinath, IEEE Electron Device Lett., vol.6, pp.505-506, 1985.
    [4] N. Jain and R. Gutmann, “ Modeling and design of GaAs MESFET
    control devices for broad-band applications”, IEEE Trans.
    Microwave Theory Tech., vol.38, pp.109-117, 1990.
    [5] Y. –F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D.
    Kapolnek, S. P. Denbaars, and U. K. Mishra, “ Bias dependent
    microwave performance of AlGaN/GaN MODFET’s up to 100V”,
    IEEE Electron Device Lett., vol.18, pp.290-292, 1997.
    [6] O. Aktas, Z. F. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T.
    Jenkins, L. Kehias, and H. Morkoc, “ Microwave performance of
    AlGaN/GaN inverted MODFET’s”, IEEE Electron Device Lett.,
    vol.18, pp.293-295, 1997.
    [7] M. A. Khan, Q. Chen, J. W. Yang, M. S. Shur, B. T. Dermott, and J.
    A. Higgins, “ Microwave operation of GaN/AlGaN-doped channel
    heterostructure field effect transistors”, IEEE Electron Device Lett.,
    vol.17, pp.325-327, 1996.
    [8] Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, and U.
    K. Mishra, “ Measured microwave power performance of
    AlGaN/GaN MODFET”, IEEE Electron Device Lett., vol.17,
    pp.455-457, 1996.
    [9] Z. Fan, C. Lu, A. Botchkarve, H. Tang, A. Salvador, O. Aktas, W.
    Kim, and H. Morkoc, “ AlGaN/GaN double heterostructure
    channel modulation doped field effect transistor (MODFETs)”,
    Electron. Lett., vol.33, pp.814-815, 1997.
    [10] O. Aktas, Z. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T.
    Jenkins, L. Kehias, and H. Morkoc, “ Microwave performance of
    AlGaN/GaN inverted MODFET’s”, IEEE Electron Device Lett.,
    vol.18, pp.293-295, 1997.
    [11] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J.
    Burm, W. Schaff, and L. F. Eastman, “ Short-channel GaN/AlGaN
    doped channel heterostructure field effect transistors with 36.1
    cutoff freq”, Electron. Lett., vol.32, pp.357, 1996.
    [12] Y. F. Wu, B. P. Keller, S. Keller, N. X. Nguygen, M. Le, C. Nguyen,
    T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra,
    “ Short channel AlGaN/GaN MODFET’s with 50-GHz fT and
    1.7-W/mm output-power at 10GHz”, IEEE Electron Device Lett.,
    vol.18, pp.438-440, 1997.
    [13] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Hehias,
    and S. P. Denbaars, “ High Al-content AlGaN/GaN MODFETs for
    ultrahigh performance”, IEEE Electron Device Lett., vol.19,
    pp.50-53, 1998.
    [14] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M.
    Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M.
    Stutzman, W. Rieger, and J. Hilsenbeck, “ Two-dimensional
    electron gases induced by spontaneous and piezoelectric
    polarization charges in N- and Ga-face”, J. Appl. Phys., vol.85,
    pp.3222-3233, 1999.
    [15] R. Vetury, N.-Q. Zhang, S. Keller, and U. K. Mishra, “ The impact
    of surface states on the DC and RF characteristics of AlGaN/GaN
    HFETs”, IEEE Trans. Electron Devices, vol.48, pp.560-566, 2001.
    [16] M. E. Twigg, D. D. Koleske, A. E. Wickenden, R. L. Henry, and M.
    Fatemi, presented at the 42nd Electronic Materials Conference,
    Denver, CO, 2000.
    [17] D. C. Look, D. C. Reynolds, W. Kim, O. Aktas, A. Botchkarev, A.
    Salvador, and M. Morkoc, “ Deep-center hopping conduction in
    GaN”, J. Appl. Phys., vol.80, pp.2960-2963, 1996.
    [18] L. K. Li, J. Alperin, W. I. Wang, D. C. Look, and D. C. Reynolds,
    “ High mobility AlGaN/GaN heterostructures grown by gas-source
    molecular beam epitaxy”, J. Vac. Sci. Tech. B, vol.16,
    pp.1275-1277, 1998.
    [19] J. P. Zhang, D. Z. Sun, X. L. Wang, M. Y. Kong, Y. P. Zeng, J. M.
    Li, and L. Y. Lin, “ Feri-edge singularity observed in a
    modulation-doped AlGaN/GaN heterostructure”, Appl. Phys. Lett.,
    vol.73, pp.2471-2472, 1998.
    [20] H. Tang, J. B. Webb, P. Coleridge, J. A. Bardwell, C.H. Ko, Y. K.
    Su, and S. J. Chang, International Workshop on Nitrides (IWN
    2002) (special issue of physica status solidi) No. b/1475 (136).
    [21] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Hehias,
    and S. P. Denbaars, “ High Al-content AlGaN/GaN MODFETs for
    ultrahigh performance”, IEEE Electron Device Lett., vol.19,
    pp.50-53, 1998.
    [22] J. M. Redwing, M. A. Tisckler, J. S. Flynn, S. Elhamari, M.
    Ahoujji, R. S. Newrock, and W. C. Mitchel, “ Two-dimensional
    electron gas properties of AlGaN/GaN heterostructures grown on
    6H-SiC and sapphire substrates”, Appl. Phys. Lett., vol.69,
    pp.963-965, 1996.
    [23] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M.
    Nurphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M.
    Stutsmann, W. Riger, and J. Hilsenbeck, “ Two-dimensional
    electron gases induced by spontaneous and piezoelectric
    polarization charges in N- and Ga-face”, J. Appl. Phys., vol.85,
    pp.3222-3233, 1999.
    [24] I. Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A.
    Wieszt, H. Leier, R. Verury, U. K. Mishra, I. P. Smorchkova, N. X.
    Nguyen, and E. Kohn, “ Current instabilities in GaN-based
    devices”, IEEE Electron Device Lett., vol.22, pp.62-64, 2001.
    [25] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “ The impact
    of surface states on the DC and RF characteristics of AlGaN/GaN
    HFETs”, IEEE Trans on Electron Devices, vol.48, pp.560-566,
    2001.
    [26] V. Vertiatchikh, L. F. Eastman, W. J. Schaff, and T. Prunty, “ Effect
    of surface passivation of AlGaN/GaN heterostructure field-effect
    transistor”, Electronics Letters, vol.38, pp.388-389, 2002.
    [27] J. B. Webb, H. Tang, S. Rolfe, and J. A. Bardwell,
    “ Semi-insulating C-doped GaN and high-mobility AlGaN/GaN
    heterostructures grown by ammonia molecular beam epitaxy”,
    Appl. Phys. Lett., vol.75, pp.953-955, 1999.
    [28] J. B. Webb, H. Tang, J. A. Bardwell, and P. Coleridge, “ Growth of
    high mobility GaN and AlGaN/GaN high electron mobility
    transistor structures on 4H-SiC by ammonia molecular-beam
    epitaxy”, Appl. Phys. Lett., vol.78, pp.3845-3847, 2001.
    [29] H. Tang, J. B. Webb, J. A. Bardwell, and S. Raymond, “ Properties
    of carbon-doped GaN”, Appl. Phys. Lett., vol.78, pp.757-759,
    2001.
    [30] J. B. Webb, H. Tang, J. A. Bardwell, S. Moisa, C. Peters, and T.
    MacElwee, J. Crystal Growth, vol.135, pp.71, 2001.
    [31] H. Tang, J. B. Webb, J. A. Bardwell, S. Rolfe, and T. W. MacElwee,
    Solid-State Electron, vol.44, pp.2177, 2000.
    [32] M. Micovici, N. X. Nguyen, P. Janke, W. S. Wong, P. Hashimoto,
    L. M. McCray, and C. Nguyen, “ GaN/AlGaN high electron
    mobility transistor with fT of 110GHz”, Electron. Lett., vol.36,
    pp.358-359, 2000.
    [33] V. Kumar, W. Lu, R. Schwindt, J. Van Hove, P. Chow, and I.
    Adesida, “ 0.25 μm gate-length, MBE-grown AlGaN/GaN HEMTs
    with high current and high fT”, Electron. Lett., vol.37, pp.858-859,
    2001.

    Chapter 6
    [1] M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M.
    Blasingame and L. F. Reitz, “ High-responsivity photoconductive
    ultraviolet sensors based on insulating single-crystal GaN epilayers”,
    Appl. Phys. Lett., vol.60, pp.2917-2919, 1992.
    [2] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame and A. R.
    Bhattarai, “ Schottky barrier photodetector based on Mg-doped
    p-type GaN films”, Appl. Phys. Lett., vol.63, pp.2455-2456, 1993.
    [3] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu and M.
    Razeghi, “ AlGaN ultraviolet photoconductors grown on sapphire”,
    Appl. Phys. Lett., vol.68, pp.2100-2101, 1996.
    [4] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B.
    Beaumout, P. Gibart, J. A. Muñoz and F. Cussó, Semicond. Sci.
    Technol., vol.13, pp.1042, 1998.
    [5] Y. Z. Chiou, Y. K. Su, S. J. Chang, Y. C. Lin, C. S. Chang and C. H.
    Chen, Solid State Electron, vol.46, pp.2227, 2002.
    [6] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T.
    Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra,
    “ High-performance (Al, Ga)N-based solar-blind ultraviolet p-I-n
    detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett.,
    vol.75, pp.247-249, 1999.
    [7] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez and
    M.Razeghi, “ High-quality visible-blind AlGaN p-I-n photodiodes”,
    Appl. Phys. Lett., vol.74, pp.1171-1173, 1999.
    [8] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z.
    Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, “ Schottky
    barrier detectors on GaN for visible-blind ultraviolet detection”,
    Appl. Phys. Lett., vol.70, pp.2277-2279, 1997.
    [9] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang,
    J. K. Sheu and J. F. Chen, “ GaN metal-semiconductor-metal
    ultraviolet photodetectors with transparent indium-tin-oxide
    Schottky contacts”, IEEE Photon. Technol. Lett., vol.13, pp.848-850,
    2001.
    [10] Y. K. Su, S. J. Chang, C. H. Chen, G. C. Chi, J. Y. Chi, C. A. Chang,
    J. K. Sheu and J. F. Chen, “ GaN metal-semiconductor-metal
    ultraviolet sensor with various contact electrodes”, IEEE J. Sensor,
    vol.2, pp.366-371, 2002.
    [11] P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A.
    Rogalski and M. Razeghi, “ Kinetics pf photoconductivity in
    n-type GaN photodetector”, Appl. Phys. Lett., vol.67, pp.3792-
    3794, 1995.
    [12] F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz and V. Harle,
    “ Mechanisms of recombination in GaN photodetectors”, Appl.
    Phys. Lett., vol.69, pp.1202-1204, 1996.
    [13] L. B. Flannery, I. Harrison, D. E. Lacklison, R. I. Dykeman, T. S.
    Cheng and C. T. Foxon, Mater. Sci. Eng. B, vol.50, pp.307,1997.
    [14] J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev and H.
    Morkoc, “ Nature of Mg impurities in GaN”, Appl. Phys. Lett., 69,
    1474, 1996.
    [15] C. H. Qiu and J. I. Pankove, “ Deep levels and persistent
    photoconductivity in GaN thin films”, Appl. Phys. Lett., vol.70,
    pp.1983-1985, 1997.
    [16] H. M. Chen, Y. F. Chen, M. C. Lee and M. S. Feng, “ Persistent
    photoconductivity in-n-type GaN”, J. Appl. Phys., vol.82, pp.899-
    901, 1997.
    [17] G. Beardie, W. S. Rabinovich, A. E. Wickenden, D. D. Koleske, S.
    C. Binari and J. A. Jr. Freitas, “ Persistent photoconductivity
    in-n-type GaN” Appl. Phys. Lett., vol.71, pp.1092-1094, 1997.
    [18] C. V. Reddy, K. Balakrishnan, H. Okumura and S. Yoshida,
    “ Optical properties of GaN grown over SiO2 on SiC substrates by
    molecular beam epitaxy”, Appl. Phys. Lett., vol.73, pp.244-245,
    1998.
    [19] C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono and J. I.
    Pankove, Appl. Phys. Lett., vol.66, pp.2712, 1998.
    [20] B. W. Lim, Q. C. Chen, J. Y. Yang and M. Asif Khan, Appl. Phys.
    Lett., vol.68, pp.3761, 1996.
    [21] D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu and M. Razeghi,
    Appl. Phys. Lett., vol.70, pp.949, 1997.
    [22] S. Subramanian, D. Schulte, L. Ungier, P. Zhao, T. K. Plant,
    and J. R. Arthur, “ A high-gain, modulation-doped photodetector
    using low-temperature MBE-grown GaAs”, IEEE Electron Device
    Lett., vol.16, pp.20-22, 1995.
    [23] M. A. Khan, M. S. Shur, Q. Chen, J. N. Kuznia, and C. J. Sun,
    “ Gate photodetector based on GaN/AlGaN heterostructure field
    effect transistor”, Electronics Lett., vol.31, pp.398-400, 1995.
    [24] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen,
    IEEE Photon. Technol. Lett., vol.13, pp.559, 2001.
    [25] D. E. Lacklison, J. J. Harris, C. T. Foxon, J. Hewett, D. Hilton, and
    C. Robers, Semicond. Sci. Technol., vol.3, pp.633, 1988.
    [26] J. M. Redwing, J. S. Flynn, M. A. Tischler, W. Mitchel, and A.
    Saxler, Mater. Res. Soc. Symp. Proc., vol.395, pp.201, 1995.
    [27] J. Z. Li, J. Y. Lin, and H. X. Jiang, J. Appl. Phys., vol.82, pp.3,
    1997.
    [28] J. Z. Li, J. Y. Lin, H. X. Jiang, and M. A. Khan, Appl. Phys. Lett.,
    vol.72, pp.22, 1998.
    [29] P.Kung, X.Zhang, D.Walker, A.Saxler, J.Potrowski, a.Rogaliski
    and M.Razeghi, Appl. Phys. Lett., vol.67, pp.25, 1995.
    [30] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class
    high-brightness InGaN/AlGaN double - heterostructure
    blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp.
    1687-1689, 1994.
    [31] S. Nakamura, “Zn-doped InGaN Growth and InGaN/AlGaN
    Double-Hterostructore blue-light-emitting diodes,” J. Cryst.
    Growth, vol.145, pp.911-917, 1994.
    [32] S. Nakamura, “III-V nitride based light-emitting devices,” Solid
    State Communications, vol. 102, Issue. 2-3, pp. 237-248, 1997.
    [33] S. Nakamura, “InGaN-based blue light-emitting diodes and laser
    diodes,” J. Cryst. Growth, 201-202, pp. 290-295, 1999.
    [34] T. Mukai, D. Morita, and S. Nakamura, “High-power UV
    InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth,
    189-190, pp.778-781, 1994.
    [35] Hon, R. H., and Lan, W. H., CSIST Annual Report, in Chinese,
    2000.
    [36] T. Yamamoto, Y. H. Katayama, “Electronic structures of p-type
    GaN codoped with Be or Mg as the acceptors and Si or O as the
    donor codopants,” J. Cryst. Growth, 189-190, pp.532-536, 1998.
    [37] K. S. Kim, G. M. Yang, and H. J. Lee, “The study on the growth
    and properties of Mg doped and Mg–Si codoped p-type GaN,”
    Solid-State Electronics., vol.43, pp.1807-1812, 1999.
    [38] C. K. Shu, J. Ou, H. C. Lin, W. K. Chen, and M. C. Lee,
    “Isoelectronic In-doping effect in GaN films grown by
    metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol.73,
    pp.641-643, 1998.
    [39] S. Yamaguchi, M. Kariya, S. Nitta, H. Amano, and I. Akasaki,
    “Strain relief and its effect on the propereies of GaN using
    isoelectronic In doping grown by metalorganic vapor phase
    epitaxy,” Appl. Phys. Lett., vol.75, pp.4106-4108, 1999.
    [40] H. M. Chung, W. C. Chuang, Y. C. Pan, C. C. Tsai, M. C. Lee, W.
    H. Chen, W. K. Chen, C. I. Chiang, C. H. Lin, and H. Chang,
    “Electrical characterization of isoelectronic In-doping effects in
    GaN films grown by metalorganic vapor phase epitaxy,” Appl.
    Phys. Lett., vol.76, pp.897-899, 2000.

    下載圖示 校內:2004-07-22公開
    校外:2004-07-22公開
    QR CODE