| 研究生: |
黃靖雯 Huang, Ching-Wen |
|---|---|
| 論文名稱: |
ITO電極表面改質以及熱蒸鍍法製備MoO3/Al/MoO3 電極技術之建立及應用於OLED元件 Technology development of ITO surface modification and MoO3/Al/MoO3 films as the electrode by thermal deposition method for OLEDs applications |
| 指導教授: |
朱聖緣
chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 電極表面改質 、氟化銫溶液 、三層電層 、彎曲測試 |
| 外文關鍵詞: | electrode modification, CsF solution, tri-layer electrode, bending test. |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以ITO電極表面改質以及熱蒸鍍法製備MoO3/Al/MoO3 電極技術之建立,並應用於有機發光二極體元件,及進行其元件分析。
論文主要分為兩大部分,第一部份為利用CsF溶液對ITO電極表面改質並探討對於元件特性影響及相關機制。第二部份為以熱蒸鍍法製備MoO3/Al/MoO3 陽極電極於不同機板(玻璃基板與塑膠基板(PES))並且應用於有機發光二極體元件。
由實驗結果發現:第一部分以結構為ITO / NPB (40nm) / Alq3 (60nm) / LiF (1nm) / Al (150nm)的有機發光二極體元件,使用CsF溶液對ITO電極表面改質,此方法增加ITO功函數達到5.1eV及表面能,且降低了表面粗糙度,提升元件效率。其中發現CsF溶液在10%濃度對ITO基板改質運用元件可提升最好的效率至2.94 cd/A及輝度可達到20300 cd/m2
第二部份製備MoO3/Al/MoO3 陽極電極具有微共振腔效應;並成功運用於塑膠基板(PES)製備元件,且進行彎曲討論,陽極部分的最佳厚度為Glass / MoO3(30nm) / Al (15nm) / MoO3 (5nm),其元件結構為substrate/MoO3/Al/MoO3 / NPB (40nm) / Alq3 (60nm) / LiF (1nm) / Al (150nm)的有機發光二極體元件。當中此研究又對MoO3/Al/MoO3及Al/MoO3陽極電極討論,其中金屬鋁與有機層界面存在一個能障差,MoO3視為緩衝層(電洞注入層)可降低電洞注入至有機層且能修飾金屬鋁的表面形貌,再將其電極運用於元件表現發現沉積在玻璃基板比塑膠基板上較,由於陽極MoO3/Al/MoO3 沉積玻璃基板有好的附著力與塑膠基板相比,最後運用於元件其效率可達到3.14 cd/A且輝度可達到21800 cd/m2。
In this thesis, we focused on how to fabricate a ITO-free organic light-emitting diodes MoO3/Al/MoO3 as semitransparent anode by thermal deposition, and the investigation the performance of organic light-emitting devices with ITO substrate was modified by caesium fluoride solution and follow by UV-ozone treatment.
In the first part of this search, fabricate a ITO-free organic light-emitting diodes MoO3/Al/MoO3 as semitransparent anode by thermal deposition. At the second part, the investigation the performance of organic light-emitting devices with ITO substrate was modified by caesium fluoride solution and follow by UV-ozone. Furthermore, the admittance spectroscopy proved useful in interface modification because of anode buffer layer. In the last part, we discussed the applications of OLED device.
In this study, the ITO substrates was modified by CsF solution, the work function and the surface roughness decreases with small concentrations of CsF solution. As the result, the device with ITO modified have a better performance (ITO / NPB (40nm) / Alq3 (60nm) / LiF (1nm) / Al (150nm)), the driving voltage of the device was 3V, the luminance can be reached to 20300 cd/m2 and the efficiency was 2.94 cd/A. In addition, ITO-free organic light-emitting diodes MoO3/Al/MoO3 as semitransparent anode fabricated by thermal deposition, the EL spectrum of the device has been demonstrated because of micro-cavity effect. The configurations of the proposed devices were glass / MoO3(30nm) / Al (15nm) / MoO3 (5nm) / (NPB) (40 nm)/ Alq3 (60 nm)/ LiF (1 nm)/ Al (150 nm), had a better performance, the luminance can be reached to 21800 cd/m2 and the efficiency was 3.14 cd/A
[1] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, pp. 913-915, 1987.
[2] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, pp. 3610-3616, 1989.
[3] J. Kido, M. Kimura, and K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device," Science, vol. 267, pp. 1332-1334, March 3, 1995 1995.
[4] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, et al., "Light-emitting diodes based on conjugated polymers," Nature, vol. 347, pp. 539-541, 1990.
[5] B. W. D'Andrade and S. R. Forrest, "White Organic Light-Emitting Devices for Solid-State Lighting," Advanced Materials, vol. 16, pp. 1585-1595, 2004.
[6] C.-H. Chang, H.-C. Cheng, Y.-J. Lu, K.-C. Tien, H.-W. Lin, C.-L. Lin, et al., "Enhancing color gamut of white OLED displays by using microcavity green pixels," Organic Electronics, vol. 11, pp. 247-254, 2010.
[7] P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi, and T. X. Zhou, "Semitransparent cathodes for organic light emitting devices," Journal of Applied Physics, vol. 87, pp. 3080-3085, 2000.
[8] L. Hung, C. Tang, and M. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, pp. 152-154, 1997.
[9] M. Mason, L. Hung, C. Tang, S. Lee, K. Wong, and M. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," Journal of Applied Physics, vol. 86, pp. 1688-1692, 1999.
[10] Q. T. Le, F. Nüesch, L. J. Rothberg, E. W. Forsythe, and Y. Gao, "Photoemission study of the interface between phenyl diamine and treated indium–tin–oxide," Applied Physics Letters, vol. 75, pp. 1357-1359, 1999.
[11] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, "Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double
layered organic light-emitting diodes," Applied Physics Letters, vol. 70, pp. 2741-2743, 1997.
[12] M. Utsumi, N. Matsukaze, A. Kumagai, Y. Shiraishi, Y. Kawamura, and N. Furusho, "Effect of UV treatment on anode surface in organic EL displays," Thin Solid Films, vol. 363, pp. 13-16, 2000.
[13] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, et al., "Surface electronic structure of plasma-treated indium tin oxides," Applied Physics Letters, vol. 78, pp. 2595-2597, 2001.
[14] C. N. Li, C. Y. Kwong, A. B. Djurišić, P. T. Lai, P. C. Chui, W. K. Chan, et al., "Improved performance of OLEDs with ITO surface treatments," Thin Solid Films, vol. 477, pp. 57-62, 2005.
[15] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, "Effect of UV–ozone treatment on ITO and post-annealing on the performance of organic solar cells," Synthetic Metals, vol. 159, pp. 754-756, 2009.
[16] C. Wu, C. Wu, J. Sturm, and A. Kahn, "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices," Applied Physics Letters, vol. 70, pp. 1348-1350, 1997.
[17] B.S. Kim, D. E. Kim, Y.K. Yang, N.S. Lee, O.K. Know, Y.S. Know, "UV-Ozone Surface Treatment of Indium-Tin-Oxide in Organic Light Emitting Diodes," Journal of the Korean Physical Society, vol. 50, pp. 1858-1861, 2007.
[18] X. Cao and Y. Zhang, "Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide," Applied Physics Letters, vol. 100, p. 183304, 2012.
[19] Z. Z. You, "Combined AFM, XPS, and contact angle studies on treated indium–tin-oxide films for organic light-emitting devices," Materials Letters, vol. 61, pp. 3809-3814, 2007.
[20] A. Rudawska and E. Jacniacka, "Analysis for determining surface free energy uncertainty by the Owen–Wendt method," International Journal of Adhesion and Adhesives, vol. 29, pp. 451-457, 2009.
[21] J. Kim, R. Friend, and F. Cacialli, "Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements," Journal of Applied Physics, vol. 86, pp. 2774-2778, 1999.
[22] K.-X. Ma, C.-H. Ho, F. Zhu, and T.-S. Chung, "Investigation of surface energy for organic light emitting polymers and indium tin oxide," Thin Solid Films, vol. 371, pp. 140-147, 2000.
[23] M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, "Impact of the metal cathode and CsF buffer layer on the performance of organic light-emitting devices," Journal of Applied Physics, vol. 95, pp. 5397-5402, 2004.
[24] L. Niu and Y. Guan, "Which is better as a buffer layer for organic light-emitting devices, CsF or LiF?," physica status solidi (a), vol. 207, pp. 993-997, 2010.
[25] G. Greczynski, M. Fahlman, and W. R. Salaneck, "Hybrid interfaces of poly(9,9-dioctylfluorene) employing thin insulating layers of CsF: A photoelectron spectroscopy study," The Journal of Chemical Physics, vol. 114, pp. 8628-8636, 2001.
[26] H. Y. Mao, R. Wang, J. Q. Zhong, S. Zhong, J. D. Lin, X. Z. Wang, et al., "A high work function anode interfacial layer via mild temperature thermal decomposition of a C60F36 thin film on ITO," Journal of Materials Chemistry C, vol. 1, p. 1491, 2013.
[27] T. J. Whitcher, K. H. Yeoh, Y. B. C. Ng, N. A. Talik, C. L. Chua, K. L. Woon, et al., "Enhancement of the work function of indium tin oxide by surface modification using caesium fluoride," Journal of Physics D: Applied Physics, vol. 46, p. 475102, 2013.
[28] J. Owen, M. Son, K. Yoo, B. Ahn, and S. Lee, "Organic photovoltaic devices with Ga-doped ZnO electrode," Applied physics letters, vol. 90, pp. 033512-033512-3, 2007.
[29] Y.-S. Kim and W.-P. Tai, "Electrical and optical properties of Al-doped ZnO thin films by sol–gel process," Applied Surface Science, vol. 253, pp. 4911-4916, 2007.
[30] J. Meyer, P. Görrn, S. Hamwi, H.-H. Johannes, T. Riedl, and W. Kowalsky, "Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition," Applied Physics Letters, vol. 93, p. 073308, 2008.
[31] C. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, and R. Martel, "Carbon nanotube sheets as electrodes in organic light-emitting diodes," Applied Physics Letters, vol. 88, pp. 183104-183104-3, 2006.
[32] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, et al., "Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes," Nano Letters, vol. 6, pp. 1880-1886, 2006.
[33] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, et al., "Organic light-emitting diodes on solution-processed graphene transparent electrodes," ACS nano, vol. 4, pp. 43-48, 2009.
[34] L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, "Scalable coating and properties of transparent, flexible, silver nanowire electrodes," ACS nano, vol. 4, pp. 2955-2963, 2010.
[35] K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, et al., "Highly flexible and transparent InZnSnOx ∕ Ag∕ InZnSnOx multilayer electrode for flexible organic light emitting diodes," Applied Physics Letters, vol. 92, p. 223302, 2008.
[36] H. Cho, C. Yun, J.-W. Park, and S. Yoo, "Highly flexible organic light-emitting diodes based on ZnS/Ag/WO multilayer transparent electrodes," Organic Electronics, vol. 10, pp. 1163-1169, 2009.
[37] J.-A. Jeong and H.-K. Kim, "Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells," Solar Energy Materials and Solar Cells, vol. 93, pp. 1801-1809, 2009.
[38] D.-D. Zhang, J. Feng, Y.-Q. Zhong, Y.-F. Liu, H. Wang, Y. Jin, et al., "Efficient top-emitting organic light-emitting devices using Fe3O4 modified Ag anode," Organic Electronics, vol. 11, pp. 1891-1895, 2010.
[39] C.-W. Chen, C.-L. Lin, and C.-C. Wu, "An effective cathode structure for inverted top-emitting organic light-emitting devices," Applied Physics Letters, vol. 85, pp. 2469-2471, 2004.
[40] J. Chang, Z. Ming Kam, Z. Lin, C. Zhu, J. Zhang, and J. Wu, "TiOx/Al bilayer as cathode buffer layer for inverted organic solar cell," Applied Physics Letters, vol. 103, pp. 173303-1, 2013.
[41] D. Sahu, S.-Y. Lin, and J.-L. Huang, "ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode," Applied Surface Science, vol. 252, pp. 7509-7514, 2006.
[42] D.-T. Nguyen, S. Vedraine, L. Cattin, P. Torchio, M. Morsli, F. Flory, et al., "Effect of the thickness of the MoO3 layers on optical properties of MoO3/Ag/MoO3 multilayer structures," Journal of Applied Physics, vol. 112, p. 063505, 2012.
[43] C. Tao, G. Xie, C. Liu, X. Zhang, W. Dong, F. Meng, et al., "Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode," Applied Physics Letters, vol. 95, p. 053303, 2009.
[44] W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond, and J. Xue, "Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode," Organic Electronics, vol. 13, pp. 2221-2228, 2012.
[45] K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, et al., "Optical properties of WO3/Ag/WO3 multilayer as transparent cathode in top-emitting organic light emitting diodes," The Journal of Physical Chemistry C, vol. 115, pp. 3453-3459, 2011.
[46] M. Baldo, S. Lamansky, P. Burrows, M. Thompson, and S. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, vol. 75, pp. 4-6, 1999.
[47] M. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, pp. 151-154, 1998.
[48] M. Baldo, M. Thompson, and S. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature, vol. 403, pp. 750-753, 2000.
[49] M. Baldo, M. Thompson, and S. Forrest, "Phosphorescent materials for application to organic light omitting devices," Pure and Applied Chemistry, vol. 71, pp. 2095-2106, 1999.
[50] 黃孝文 and 陳金鑫, "有機電激發光材料與元件," 2005.
[51] B. G. Lewis and D. C. Paine, "Applications and processing of transparent conducting oxides," Mrs Bulletin, vol. 25, pp. 22-27, 2000.
[52] T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P. K. Song, K. Utsumi, et al., "Comparative study on structure and internal stress in tin-doped indium oxide and indium-zinc oxide films deposited by r.f. magnetron sputtering," Thin Solid Films, vol. 445, pp. 219-223, 2003.
[53] C.-W. Chen, P.-Y. Hsieh, H.-H. Chiang, C.-L. Lin, H.-M. Wu, and C.-C. Wu, "Top-emitting organic light-emitting devices using surface-modified Ag anode," Applied Physics Letters, vol. 83, pp. 5127-5129, 2003.
[54] H. You, Y. Dai, Z. Zhang, and D. Ma, "Improved performances of organic light-emitting diodes with metal oxide as anode buffer," Journal of applied physics, vol. 101, pp. 026105-026105-3, 2007.
[55] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, "Transition metal oxides as the buffer layer for polymer photovoltaic cells," Applied Physics Letters, vol. 88, pp. 073508-073508-3, 2006.
[56] J. Zhao, S. Zhang, X. Wang, Y. Zhan, X. Wang, G. Zhong, et al., "Dual role of LiF as a hole-injection buffer in organic light-emitting diodes," Applied physics letters, vol. 84, pp. 2913-2915, 2004.
[57] S. Van Slyke, C. Chen, and C. Tang, "Organic electroluminescent devices with improved stability," Applied Physics Letters, vol. 69, pp. 2160-2162, 1996.
[58] H. Aziz, Z. Popovic, C. P. Tripp, N.-X. Hu, A.-M. Hor, and G. Xu, "Degradation processes at the cathode/organic interface in organic light emitting devices with Mg: Ag cathodes," Applied physics letters, vol. 72, pp. 2642-2644, 1998.
[59] Y. Kim, D. Choi, B. Moon, E. Oh, H. Lim, S. Kwon, et al., "Controllable Work Function of Li: Al Alloy Nanolayers for Organic Light‐Emitting Devices," Advanced Engineering Materials, vol. 7, pp. 1023-1027, 2005.
[60] M. Ohring, Materials science of thin films: Academic press, 2001.
[61] 陳佑誠, "超薄緩衝層與元件結構 (共主體與量子井) 之探討及其應用於高效率有機發光元件," 2013.
[62] D. K. Owens and R. Wendt, "Estimation of the surface free energy of polymers," Journal of applied polymer science, vol. 13, pp. 1741-1747, 1969.
[63] H. Fox and W. Zisman, "The spreading of liquids on low-energy surfaces. II. Modified tetrafluoroethylene polymers," Journal of colloid science, vol. 7, pp. 109-121, 1952.
[64] W. A. Zisman, "Influence of constitution on adhesion," Industrial & Engineering Chemistry, vol. 55, pp. 18-38, 1963.
[65] F. M. Fowkes, "Attractive forces at interfaces," Industrial & Engineering Chemistry, vol. 56, pp. 40-52, 1964.
[66] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, pp. 4086-4089, 2008.
[67] P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, "Role of CsF on electron injection into a conjugated polymer," Applied Physics Letters, vol. 77, pp. 2403-2405, 2000.
[68] W. Yu, L. Shen, F. Meng, Y. Long, S. Ruan, and W. Chen, "Effects of the optical microcavity on the performance of ITO-free polymer solar cells with WO3/Ag/WO3 transparent electrode," Solar Energy Materials and Solar Cells, vol. 100, pp. 226-230, 2012.
[69] C. Tao, G. Xie, C. Liu, X. Zhang, W. Dong, F. Meng, et al., "Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode," Applied Physics Letters, vol. 95, pp. 053303-1- 053303-3, 2009.
[70] S. Lim, D. Han, H. Kim, S. Lee, and S. Yoo, "Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells," Solar Energy Materials and Solar Cells, vol. 101, pp. 170-175, 2012.
[71] X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, "The design of ZnS/Ag/ZnS transparent conductive multilayer films," Thin Solid Films, vol. 441, pp. 200-206, 2003.
校內:2019-08-04公開