簡易檢索 / 詳目顯示

研究生: 林煜得
Lin, Yu-De
論文名稱: 多孔隙瀝青混凝土長期績效
Long - Term Pavement Performance of Porous Asphalt
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 多孔隙瀝青混凝土(PAC)鋪面績效
外文關鍵詞: porous asphalt concrete (PAC), pavement performance
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔性瀝青混凝土(Porous Asphalt Concrete,PAC),內部孔隙率達15%~25%,使用較高比例粗粒料,完成面糙度較高,在雨天行駛時提供車輪良好摩擦力,維持鋪面層抗滑性,並具有排水快速特性,可降低車輛因雨天打滑或水霧影響發生肇事率,提高行車安全性。
    國道6號南投段全長37.6公里,扣除隧道段,其餘33.3公里皆
    採用PAC鋪面技術,乃是國內首次大規模採用PAC之高速公路。本研究主要為探討本路段2008年全線通車迄今,PAC鋪面路段經過長期通車後,對於環境天候的變化以及交通流量載重影響,不同路段之多孔隙瀝青混凝土鋪面長期績效,及績效與交通流量荷重相關性。
    依據現地評估鋪面績效之功能性、耐久性及安全性,整理分析後,在功能性透水量方面,除兩路段靠近匝道外,PAC鋪面保持良好透水性和減噪等功能性要求,另外全部路段之平坦度、車轍和鋪面結構等耐久性均在水準以上,抗滑度符合行車安全性要求。根據資料收集與成果探討,國道6號觀測路段最久已達105個月,PAC鋪面長期績效表現良好。建議持續監測功能性、耐久性和安全性等績效變化狀況,分析整體PAC路面生命週期成效。

    Porous Asphalt Concrete (Porous Asphalt Concrete,PAC), the internal porosity reaches 15%~25%, uses a higher proportion coarse granular material, completes the surface roughness is higher, provides the wheel good friction in the rainy day driving, maintains the pavement layer anti-slip, and has the drainage fast characteristic, can reduce the vehicle because the rainy day skidding or the water mist affects occurrence rate, enhances the driving safety.

    The 6th National Road, Nantou section of the length of 37.6 kilometers, deduct the tunnel section, the remaining 33.3 kilometers are using PAC pavement Technology, is the first large-scale use of the PAC highway. This study mainly discusses the road section 2008 to date, Pac pavement after a long period of traffic, the environmental weather changes and traffic flow load impact, different sections of the porous asphalt pavement long-term performance, and performance and traffic load correlation.

    Evaluate the performance of the pavement based on the function, durability and safety, after finishing the analysis, in the functional water permeability, in addition to two sections near the ramp, PAC pavement to maintain good permeability and noise reduction and other functional requirements, in addition all the road sections of flatness, rutting and pavement structure, such as durability of the level above, anti-sliding degree in accordance with the safety requirements. According to the data collection and results, the 6th Highway Observation Section of the national road is the longest of 105 months, the long-term performance of PAC pavement is good. It is recommended that the performance change of function, durability and safety should be monitored continuously, and the life cycle results of the whole PAC pavement are analyzed.

    目 錄 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-2 1.3 研究目的 1-2 1.4 研究範圍 1-3 第二章 文獻回顧 2-1 2.1 多孔隙瀝青混凝土 2-1 2.1.1 瀝青材料 2-2 2.1.2 粒料材料 2-2 2.2 PAC鋪面整體功能性 2-2 2.2.1 PAC鋪面透水性績效 2-2 2.2.2 PAC鋪面減噪效果 2-3 2.3 PAC鋪面整體耐久性 2-5 2.4 PAC鋪面整體安全性 2-6 第三章 研究流程與檢測 3-1 3.1 研究流程 3-1 3.2 檢測路段里程 3-3 3.2.1 鋪面試驗點位 3-5 3.4 現地平坦度試驗 3-6 3.5 現地車轍量試驗 3-7 3.6 現地噪音量試驗 3-8 3.7 現地抗滑度試驗 3-9 3.8 現地Clegg重錘試驗 3-10 第四章 PAC鋪面長時使用績效與討論 4-1 4.1 試驗路段鋪面現況 4-1 4.1.1 鋪面試驗點位 4-2 4.1.2 橋樑段鋪面現況 4-2 4.2 鋪面整體功能性 4-5 4.2.1 功能性-現地透水量試驗 4-5 4.2.2 功能性-現地噪音量試驗 4-11 4.3 鋪面整體耐久性 4-13 4.3.1 耐久性-平坦度試驗 4-13 4.3.2 耐久性-車轍量試驗 4-16 4.3.3 耐久性- Clegg衝擊試驗 4-18 4.4 鋪面整體安全性 4-23 4.4.1 安全性-現地抗滑值試驗 4-23 4.5 交通量對PAC鋪面績效影響 4-27 4.5.1 交通荷重對現地透水量之關係 4-28 4.5.2 交通荷重與噪音量之關係 4-31 4.5.3 交通荷重與平坦度之關係 4-34 4.5.4 交通荷重與車轍量之關係 4-37 4.5.5 交通荷重與Clegg衝擊值之關係 4-40 4.5.6 交通荷重與抗滑度之關係 4-42 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-2 圖目錄 圖2.2.1 瀝青混凝土孔隙種類 2-3 圖3.1.1 研究流程圖 3-2 圖3.2.1 國道6號各標案位置分佈圖 3-3 圖3.2.2 國道6號路堤段瀝青混凝土剖面圖 3-4 圖3.2.3 國道6號橋梁段瀝青混凝土剖面圖 3-4 圖3.2.4 國道6號各檢測路段點位 3-5 圖3.3.1 透水試驗儀 3-7 圖3.3.2 現地透水量試驗 3-7 圖3.4.1 現地平坦度試驗 3-8 圖3.5.1 現地車轍量試驗 3-8 圖3.6.1 噪音計 3-9 圖3.6.2 現地噪音量試驗 3-9 圖3.7.1 現地抗滑度試驗 3-10 圖3.8.1 clegg衝擊試驗(CIT)設備 3-11 圖4.1 國道6號路側PAC鋪面現況 4-1 圖4.1.1 路堤段AR9一般傳統瀝青材料PAC鋪面現況 4-2 圖4.1.2 路堤段AR2一般傳統瀝青材料PAC鋪面現況…………….4-2 圖4.1.3 路堤段AR5一般傳統瀝青材料PAC鋪面現況…………….4-3 圖4.1.4 路堤段MA3改質瀝青材料PAC鋪面現況..........................4-3 圖4.1.5 路堤段HA8高黏度改質瀝青材料PAC鋪面現況..................4-3 圖4.1.6 橋樑段AR1一般傳統瀝青材料PAC鋪面現況...................4-4 圖4.1.7 橋樑段AR4一般傳統瀝青材料PAC鋪面現況...................4-4 圖4.1.8 橋樑段AR7一般傳統瀝青材料PAC鋪面現況...................4-4 圖4.1.9 橋樑段MA6改質瀝青材料PAC鋪面現況..........................4-5 圖4.2.1 各試驗路段通車前之現地透水量.........................................4-6 圖4.2.2 通車後之輪跡處現地透水量................................................4-8 圖4.2.3 輪跡處現地透水量之統計分析.............................................4-9 圖4.2.4 通車後之車道中心處現地透水量.......................................4-10 圖4.2.5 通車後之等值噪音量.........................................................4-12 圖4.2.6 通車後之最大噪音量.........................................................4-12 圖4.2.7 通車後之最小噪音量.........................................................4-13 圖4.3.1 通車前之IRI值.................................................................4-14 圖4.3.2 通車後之輪跡處IRI值.......................................................4-15 圖4.3.3 通車後之車道中心處IRI值................................................4-15 圖4.3.4 通車前之輪跡處車轍量......................................................4-17 圖4.3.5 通車後之輪跡處車轍量......................................................4-17 圖4.3.6 輪跡處車轍量之統計分析..................................................4-18 圖4.3.7 AR-80路堤段及橋梁段CIV值..........................................4-19 圖4.3.8 不同瀝青在路堤結構之CIV值..........................................4-20 圖4.3.9 鋼板橋與AR-80路堤段及橋梁段之CIV值比較..................4-21 圖4.3.10 路面結構之CIV值............................................................4-21 圖4.3.11 不同路段之輪跡處CIV值.................................................4-22 圖4.3.12 不同路段之車道中心處CIV值..........................................4-23 圖4.4.1 通車前之抗滑度................................................................4-24 圖4.4.2 通車後之輪跡處抗滑度.....................................................4-25 圖4.4.3 輪跡處抗滑度之統計分析..................................................4-26 圖4.4.4 通車後之車道中心處抗滑度..............................................4-26 圖4.5.1 車道之平均每日交通量(ADT)..........................................4-27 圖4.5.2 國道6號PAC鋪面每日ESAL值......................................4-28 圖4.5.3 交通荷重與現地透水量關係圖..........................................4-29 圖4.5.4 交通荷重與現地透水量分析圖(路堤段) .............................4-30 圖4.5.5 交通荷重與現地透水量分析圖(橋樑段) .............................4-30 圖4.5.6 交通荷重與噪音量關係圖..................................................4-32 圖4.5.7 交通荷重與最大噪音量分析圖(路堤段) .............................4-33 圖4.5.8 交通荷重與最大噪音量分析圖(橋樑段) .............................4-33 圖4.5.9 交通荷重與平坦度關係圖..................................................4-35 圖4.5.10 交通荷重與輪跡處IRI值分析圖(路堤段) .........................4-36 圖4.5.11 交通荷重與輪跡處IRI值分析圖(橋樑段) .........................4-36 圖4.5.12 交通荷重與車轍量關係圖................................................4-38 圖4.5.13 交通荷重與輪跡處車轍量分析圖(路堤段) .......................4-39 圖4.5.14 交通荷重與輪跡處車轍量分析圖(橋樑段) .......................4-39 圖4.5.15 交通荷重與輪跡處CIV值關係圖.....................................4-41 圖4.5.16 交通荷重與輪跡處CIV值分析圖.....................................4-41 圖4.5.17 交通荷重與抗滑度關係圖................................................4-42 圖4.5.18 交通流量與輪跡處抗滑度分析圖(路堤段) .......................4-43 圖4.5.19 交通荷重與輪跡處抗滑度分析圖(橋樑段) .......................4-44 表目錄 表2.2.1 不同鋪面表面之噪音等級 2-4 表2.4.1 鋪面紋理摩擦值比較 2-4 表3.2.1.1國道6號PAC鋪面檢測點位 3-6 表4.5.1 透水量與ESAL值迴歸式..................................................4-31 表4.5.2 最大噪音量與ESAL值迴歸式............................................4-34 表4.5.3 IRI與ESAL值迴歸式.......................................................4-37 表4.5.4 車轍量與ESAL值迴歸式...................................................4-40 表4.5.5 抗滑值與ESAL值迴歸式...................................................4-44

    參考文獻
    日本道路協會 (1999) ,「排水性鋪裝技術指針(案)」,日本。
    施工綱要規範 (2009) ,「第02798章多孔隙瀝青混凝土鋪V1.0」,行政院公共工程委員會。
    郎勝富(2011),「多孔性瀝青混凝土破壞及養護」,碩士論文,國立成功大學,台南,台灣。
    蔡攀鰲 (2004) ,「瀝青混凝土」三民書局,台北。
    Akihiro, M. , Toshiro, J. , Takaaki, N. , Hiroshi I. and Katsuya, T. (2014). “Construction and Pavement Properties After Seven Years in Porous Asphalt with Long Life,” Construction and Building Materials, Vol.50, pp.401~413.
    Alvarez, A. E., A. E. Martin, and C. Estakhri,(2009),Effects of Densification on Permeable Friction Course Mixtures, Journal of Testing and Evaluation, Vol. 37, No 1, pp. 11-20.
    Alvarez, A.E., A. E. Martin, and C. Estakhri, (2010),Drainability of Permeable Friction Course Mixtures, Journal of Materials in Civil Engineering, ASCE.
    Alvarez, A.E., A. E. Martin, C. K. Estakhri, J. W. Button, C.J. Glover, and S. H. Jung, (2006),Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses. Report No. 0-5262-1, Texas Transportation Institute, Texas A&M University, College Station, Texas.
    Alvarez, A.E., A. E. Martin, C. K. Estakhri, J. W. Button, C.J. Glover, N. Prapaitrakul, and Z. Krause, (2007),Evaluation and Recommended Improvements for Mix Design of Permeable Friction Courses. Report No. 0-5262-3, Texas Transportation Institute, Texas A&M University, College Station, Texas.
    Anfosso-L’ed’ee, F. and M. T. Do,(2002), Geometric Descriptors of Road Surface Texture in Relation to Tire-Road Noise. Transportation Research Record: Journal of the Transportation Research Board, No. 1806, TRB, Transportation Research Board of the Academies, Washington, D.C., pp. 160-167.
    Bazlamit, S. M. and F. Reza,(2005), Changes in Asphalt Pavement Friction Components and Adjustment of Skid Number for Temperature. Journal of Transportation Engineering, Vol. 131, No. 6, pp. 470-476.
    Chen, J.S. and Huang, C.C. (2010). "Effect of Surface Characteristics on Bonding Properties of Bituminous Tack Coat," Transportation Research Record: Journal of the Transportation Research Board, No. 2180, TRB, National Research Council, Washington, D.C., pp.142-149.
    Estakhri, C.K., A. E. Alvarez, and A. E. Martin, (2008),Guidelines on Construction and Maintenance of Porous Friction Courses in Texas. Report No. 0-5262-2, Texas Transportation Institute, Texas A&M University, College Station, Texas.
    Hanson, D. I., and R. S. James,(2004),Colorado DOT Tire/Pavement Noise Study. Report No. CDOT-DTD-R-2004-5, National Center for Asphalt Technology, Auburn University, Alabama.
    Herman, L., J. Withers, and E. Pinckney, (2006),Surfacing Retexture to Reduce Tire-Road Noise for Existing Concrete Pavements. Transportation Research Record: Journal of the Transportation Research Board, No. 1983, Transportation Research Board of the Academies, Washington, D.C., pp. 51-58.
    Kowalski, K., R. S. McDaniel, A. Shah, and J. Olek,(2009), Long Term Monitoring of the Noise and Frictional Properties of PFC, SMA and DGA Pavements. Transportation Research Record, 88th Annual Meeting CD ROM, Paper No. 09-2742.
    Liu,K.W., A.E. Alvarez, A.E. Martin, T. Dossey, A.Smit, and C.K.Estakhri,(2009), Synthesis of Current Research on Permeable Friction Courses: Performance, Design, Construction, and Maintenance. Texas transportation institute,Texas A&M University System,College Station.
    McDaniel, R. S., W. D. Thornton, and J. G. Dominguez,(2004),Field Evaluation of Porous Asphalt Pavement. Report No. SQDH 2004-3, North Central Superpave Center, Purdue University, Indiana.
    Nicholls J. C.(1997), Review of UK Porous Asphalt Trials, TRL Report 264, 18Transportation Research Laboratory, London, United Kingdom。
    Punith, V. S., S. N. Suresha, A. Veeraragavan, S. Raju, and S. Bose, (2004),Characterization of Polymer and Fiber-Modified Porous Asphalt mixtures. TRB 2004 Annual Meeting CD-ROM, Transportation Research Board, National Research Council, Washington, D.C..
    Sandberg U. and J.A.Easement,(2002),Tyre/Road Noise reference Book,Informex,se-59040 Kisa,Sweden.
    Trevino, M., and T. Dossey,(2006),A Research Plan for Measuring Noise Levels in Highway Pavements in Texas. Report No. 0-5185, Center for Transportation Research, University of Texas at Austin,Texas.
    Watson, D. E., L. A. Cooley Jr., K. A. Moore, and K. Williams,(2004), Laboratory Performance Testing of Open-Graded Friction Course Mixtures, Transportation Research Record, Vol. 1891, pp. 40-47.

    無法下載圖示 校內:2022-06-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE