簡易檢索 / 詳目顯示

研究生: 蔣昌仁
Chiang, Chang-Jen
論文名稱: FPGA於S轉換之實現及其於電力品質分析之應用
FPGA Realization of S-Transform and Its Application to Electric Power Quality Analysis
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 86
中文關鍵詞: 場規劃邏輯閘陣列S轉換電力品質
外文關鍵詞: S Transform, Field Programmable Gate Array, Electric Power Quality
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來由於非線性負載之廣泛使用,供電品質似有惡化之趨勢,因此如何辨識異常的電力擾動訊號及維持穩定之供電品質已愈趨重要。本文之研究主旨即應用場規劃邏輯閘陣列於S轉換電力品質分析之硬體實現,希冀藉由場規劃邏輯閘陣列之設計技巧及S轉換之時頻定位能力,可迅速掌握電力擾動訊號之時頻分佈。本研究首先以虛擬儀測系統軟體,進行S轉換演算法於其相關電力擾動訊號鑑別之可行性佐證,且續輔以場規劃邏輯閘陣列及針對S轉換演算法,提出相對之VLSI演算架構。又為驗證本研究方法之實用性,本文已經由電壓中斷,電壓驟降、電壓突昇及電壓諧波等模擬訊號測試及分析,予以證實其時頻定位之能力,此測試成果應可供電力工程人員於面臨各項電力訊號時,達成更具效能之掌控。

      With the increased utilization of nonlinear loads at demand side, the quality of supplying power is getting worse nowadays. Therefore, in this thesis, the main purpose lies in the field programmable gate array realization of S-transform and its application to power quality analysis. It is expected that through the time-frequency localization capability of S-transform, the time-frequency distribution of electric power disturbances can be better grasped. In the study, the virtual instrument system was also employed to visualize the disturbance variation. Meanwhile, the VLSI structure was implemented for the S-transform computation using field programmable gate array, where several modules were designed to facilitate the disturbance identification. In order to confirm the feasibility of such an approach, several disturbances including voltage interruption, voltage sag and voltage swell were all simulated and tested. Test results help support the time-frequency localization capability exhibited by the proposed approach. These outcomes can be also served as useful references for electric power engineers in the power quality improvement study.

    中文摘要                  I 英文摘要                  II 誌 謝                   III 目 錄                   IV 表目錄                   VI 圖目錄                   VII 第一章 緒論                1   1。1 研究背景與動機         1   1。2 研究方法            3   1。3 論文架構            4 第二章 相關演算法             5   2。1 傅立葉轉換           5     2。1。1 快速傅立葉轉換     6   2。2 短時傅立葉轉換         10   2。3 S轉換             11 第三章 模擬測試              17   3。1 模擬系統建構          17   3。2 電力品質分析          19     3。2。1 電壓中斷        19     3。2。2 電壓驟降        21     3。2。3 電壓突昇        23     3。2。4 電壓諧波        25 第四章 系統架構              27   4。1 S轉換之演算架構        27     4。1。1 直流成分模組      29     4。1。2 快速傅立葉轉換     30     4。1。3 高斯視窗模組      36     4。1。4 逆快速傅立葉轉換    37     4。1。5 振幅計算模組      38   4。2 介面架構            41   4。3 系統架構            42 第五章 實驗結果              46   5。1 轉換模組之驗證         46     5。1。1 直流成分求解      47     5。1。2 快速傅立葉轉換     48     5。1。3 逆快速傅立葉轉換    53     5。1。4 振幅計算        55     5。1。5 S轉換模組之驗證結果  57   5。2 系統開發平台          60     5。2。1 系統硬體開發平台    60     5。2。2 系統軟體開發環境    62   5。3 系統電路合成          65   5。4 系統晶片實作成果        69 第六章 結論與未來研究方向         78   6。1 結論              78   6。2 未來研究方向          79 參考文獻                  80 附錄A                   84 作者簡介                  86

    [1] D. D. Sabin and A. Sundaram, “Quality Enhances Reliability[Power Supplies]”, IEEE Spectrum, Vol. 33, No. 2, February 1996, pp. 34-41.
    [2] A. Domijan, G. T. Heydt, A. P. S. Meliopoulos, S. S. Venkata, and S. West, “Directions of Research on Electric Power Quality”, IEEE Transactions on Power Delivery, Vol. 8, No. 1, January 1993, pp. 429-436.
    [3] R. C. Dugan, M. F. McGranaghan, and H. W. Beaty, Electrical Power Systems Quality, Second edition, McGraw-Hill, New York, USA, 2002.
    [4] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Standard 1159-1995, IEEE, New York, 1995.
    [5] M. Wang and A. V. Mamishev, “Classification of Power Quality Events Using Optimal Time-Frequency Representations-Part 1: Theory”, IEEE Transactions on Power Delivery, Vol. 19, No. 3, pp. 1504-1510, July 2004.
    [6] M. Wang, G. I. Rowe, and A. V. Mamishev, “Classification of Power Quality Events Using Optimal Time-Frequency Representations-Part 2: Application”, IEEE Transactions on Power Delivery, Vol. 19, No. 3, pp. 1496-1503, July 2004.
    [7] G. T. Heydt, P. S. Fjeld, C. C. Liu, D. Pierce, L. Tu, and G. Hensely, “Applications of the Windowed FFT to Electric Power Quality Assessment”, IEEE Transactions on Power Delivery, Vol. 14, No. 4, pp. 1411-1416, Oct. 1999.
    [8] P. S. Wright, “Short-Time Fourier Transforms and Wigner-Ville Distributions Applied to the Calibration of Power Frequency Harmonic Analyzers”, IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 2, pp. 475-478, Apr. 1999.
    [9] Y. H. Gu and M. H. J. Bollen, “Time-Frequency and Time-scale Domain Analysis of Voltage Disturbances”, IEEE Transactions on Power Delivery, Vol. 15, No. 4, pp. 1279-1284, Oct. 2000.
    [10] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and S. C. Bhatt, “Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms”, IEEE Transactions on Power Delivery, Vol. 15, No. 1, pp. 247-254, Jan. 2000.
    [11] S. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power Quality Assessment Via Wavelet Transform Analysis”, IEEE Transactions on Power Delivery, Vol. 11, No. 2, pp. 924-930, Apr. 1996.
    [12] S. J. Huang and C. W. Lu, “Enhancement of Digital Equivalent Voltage Flicker Measurement via Continuous Wavelet Transform”, IEEE Transactions on Power Delivery, Vol. 19, No. 2, pp. 663-670, Apr. 2004.
    [13] S. J. Huang, C. T. Hsieh and C. L. Huang, “Application of Morlet Wavelets to Supervise Power System Disturbances”, IEEE Transactions on Power Delivery, Vol. 14, No. 1, pp. 235-243, January 1999.
    [14] S. J. Huang and C. T. Hsieh, “Coiflet Wavelet Transform Applied to Inspect Power System Disturbances-Generated Signals”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, pp. 204-210, January 2002.
    [15] M. V. Chilukuri and P. K. Dash, “Multiresolution S-Transform-Based Fuzzy Recognition System for Power Quality Events”, IEEE Transactions on Power Delivery, Vol. 19, No. 1, pp. 323-330, Jan. 2004.
    [16] P. K. Dash, B. K. Panigrahi, D. K. Sahoo, and G. Panda “Power Quality Disturbance Data Compression, Detection, and Classification Using Integrated Spline Wavelet and S-Transform”, IEEE Transactions on Power Delivery, Vol. 18, No. 2, pp. 595-600, Apr. 2003.
    [17] P. K. Dash, B. K. Panigrahi, and G. Panda “Power Quality Analysis Using S-Transform”, IEEE Transactions on Power Delivery, Vol. 18, No. 2, pp. 406-411, Apr. 2003.
    [18] I. W. C. Lee and P. K. Dash, “S-Transform-Based Intelligent System for Classification of Power Quality Disturbance Signals”, IEEE Transactions on Industrial Electronics, Vol. 50, No. 4, pp. 800-805, Aug. 2003.
    [19] P. K. Dash and M. V. Chilukuri, “Hybrid S-Transform and Kalman Filtering Approach for Detection and Measurement of Short Duration Disturbances in Power Networks”, IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, pp. 588-596, Apr. 2004.
    [20] M. G. Arnold, Verilog Digital Computer Design - Algorithm into Hardware, Prentice Hall PTR, New Jersey, U.S.A., 1999.
    [21] K. Coffman, Real World FPGA Design with Verilog, Prentice Hall, New Jersey, U.S.A., 2000.
    [22] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, Springer, New York, U.S.A., 2004.
    [23] C. Chi-Tsong, System and Signal Analysis, Saunders College, New York, U.S.A., 1994.
    [24] A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, New Jersey, U.S.A., 1999.
    [25] F. Hlawatsch and G. F. Boudreaux-bartels, “Linear and Quadratic Time-Frequency Signal Representations”, IEEE Signal Processing Magazine, pp. 21-67, Apr. 1992.
    [26] S. Mallat, A Wavelet Tour of Signal Processing, Second edition, Academic Press, San Diego, California, U.S.A., 2000.
    [27] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the Complex Spectrum: The S Transform”, IEEE Transactions on Signal Processing, Vol. 44, No. 4, pp. 998-1001, Apr. 1996.
    [28] P. C. Chu, “The S-Transform for Obtaining Localized Spectra”, Marine Technology Journal, Vol. 29, pp. 28-38, 1996.
    [29] C. R. Pinnegar and L. Mansinha, “The S-Transform with Windows of Arbitrary and Varying Shape”, Geophysics, Vol. 68, No. 1, pp. 381-385, 2003.
    [30] G. W. Johnson and R. Jennings, LabVIEW® Graphical Programming, Third Edition, McGraw Hill, New York, U.S.A., 2001.
    [31] R. Bitter, T. Mohiuddin and M. Nawrocki, LabVIEWTM Advanced Programming Techniques, CRC Press LLC, New York, U.S.A., 2001.
    [32] 江榮城,電力品質實務(一),全華科技圖書股份有限公司,民國九十年五月.
    [33] Y. Jung, H. Yoon and J. Kim, “New Efficient FFT Algorithm and Pipeline Implementation Results for OFDM/DMT Applications”, IEEE Transactions on Consumer Electronics, Vol. 49, No. 1, pp. 14-20, February 2003.
    [34] S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor”, Parallel Processing Symposium, Honolulu, Hawaii, USA, pp. 766-770, April 1996.
    [35] Y. Li and W. Chu, “A New Non-Restoring Square Root Algorithm and its VLSI Implementations”, Computer Design, Austin, Texas, USA, pp. 538-544, October 1996.
    [36] Mentor Graphics Company, “ModelSim® SE User’s Manual”, Version 6.1, May 2005.
    [37] Altera Company,“Nios II Development Kit, Stratix II Edition Getting Started User Guide”, Version 5.1, October 2005.
    [38] Altera Company,“Stratix II Development Board Handbook” Version 1.0, May 2005.
    [39] Altera Company,“Quartus II Development Software Handbook”, Version 5.1, October 2005.
    [40] Altera Company,“Nios II Hardware Development Tutorial”, Version 5.0, May 2005.
    [41] Altera Company,“Nios II Processor Reference Handbook”, Version 5.0, May 2005.
    [42] Altera Company,“Nios II Softwave Developer’s Handbook”, Version 5.0, May 2005.

    下載圖示 校內:2011-06-21公開
    校外:2011-06-21公開
    QR CODE