| 研究生: |
李宜蓉 Li, Yi-Rong |
|---|---|
| 論文名稱: |
AMN1基因表現量對釀酒酵母菌Saccharomyces cerevisiae雙倍體聚集表型及生存競爭之影響 The expression of AMN1 gene influences the aggregation phenotype and the fitness of diploid yeast Saccharomyces cerevisiae |
| 指導教授: |
宋皇模
Sung, Huang-Mo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 釀酒酵母菌 、多細胞聚集表型 、野生株RM系列 、AMN1基因 、競爭性培養 、酵母菌的聚集體 |
| 外文關鍵詞: | Saccharomyces cerevisiae, fitness, aggregation, chain-formation, AMN1gene |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
釀酒酵母菌(Saccharomyces cerevisiae)在一般環境中能以單細胞形態存在也能以多細胞的方式聚集生長,群體聚集生長有助於微生物因應環境變化提升生存適應性,目前有許多研究著手於酵母菌多細胞聚集生長所帶來的效益,例如多細胞生長的凝絮現象(flocculation)能使酵母菌藉由外部細胞屏障保護內部細胞免於環境壓力影響,提升族群生存適應性。然而酵母菌的多細胞生長型態除了凝絮現象外,還有交配聚合現象(mating aggregation)及鏈形聚集現象(chain-formation),而目前研究對於鏈型聚集現象對酵母菌群體的影響尚無深入了解,本研究就是欲探討釀酒酵母菌的鏈形聚集現象對釀酒酵母菌本身生存競爭的影響。生物表型差異可來自基因調控機制的不同所造成,本研究發現釀酒酵母菌野生菌株RM系列的RM11-1A為單倍體且具有鏈形聚集現象(chain-formation)而同基因型雙倍體菌株RM11則不具有多細胞聚集表型,經比對單倍體與雙倍體酵母菌基因表現資料我發現大約有一百多個基因在單倍體與雙倍體酵母菌之間是有差異的,其中與細胞分裂進而造成細胞聚集的基因AMN1(Antagonist of Mitotic exit Network)基因在單倍體中的表現量是雙倍體中的兩倍,因此我認為AMN1基因在單倍體與雙倍體酵母菌中表現量的差異可能是導致單倍體酵母菌帶有多細胞聚集表型而同基因型雙倍體菌株RM11則不具有多細胞聚集表型的原因之一,所以我透過基因轉殖技術提高AMN1基因在雙倍體RM11酵母菌細胞的表現量,以檢視AMN1基因的表現量與雙倍體RM11酵母菌聚集表型之關聯。在此研究中我發現AMN1基因表現量的高低會影響RM11雙倍體釀酒酵母菌的聚集表型與生存適應能力,且AMN1基因表現量變異導致RM11雙倍體酵母菌聚集表型的細胞的生存能力顯著較弱。在野生株(RM)與實驗室株(BY)共培養10天的生存能力比較中發現單倍體野生株生存能力明顯優於單倍體實驗室株,而雙倍體間生存能力無顯著差異。且發現AMN1基因過表現之雙倍體野生株酵母菌生存能力顯著弱於AMN1基因無意突變的雙倍體實驗室株酵母菌。因此本篇確定在酵母菌中影響細胞週期退出有絲分裂網路的AMN1基因表現量所造成的鏈型聚集現象生長與菌株生存能力相關。
The budding yeast Saccharomyces cerevisiae could exist as a single cell organism or exist as in multicellular form such as flocculation, aggregation or biofilm in nature. It is believed that the flocculation of cells could help yeast to cope with the changes of environment because the outer layer of cells might protect the inner layer of cells from the harsh environment. However, this theory has not been tested in the multicellular cell type resulted from incomplete cell division (chain-formation multicellular cell type). It is known that the AMN1 gene is the key regulator for chain-formation cell aggregation phenotype. Yeast cells will not aggregate if the 368th amino acid of the AMN1p protein is valine instead of aspartic acid. In addition, my lab also observed that the diploid yeast strain RM11 which carry the wild type AMN1 gene does not show the same aggregation phenotype as the same genetic background haploid strain, RM11-1a. It is reasonable to assume that the different aggregation phenotype between diploid RM11 strain and haploid RM11-1a strain could be the results of differential gene expression of AMN1 gene between diploid strain and haploid strain. In this study, I constructed an overexpression AMN1 diploid yeast strain to examine if the lower AMN1 expression of the diploid yeast was responsible for the non-aggregation phenotype of diploid yeast. Furthermore, I examined if the overexpression of AMN1 gene affect the fitness of diploid yeast.
Alani, E., Cao, L., & Kleckner, N. (1987). A Method for Gene Disruption That Allows Repeated Use of Ura3 Selection in the Construction of Multiply Disrupted Yeast Strains. Genetics, 116(4), 541-545. doi:DOI 10.1534/genetics.112.541.test
Brem, R. B., Yvert, G., Clinton, R., & Kruglyak, L. (2002). Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568), 752-755. doi:10.1126/science.1069516
Chen, E. H., Grote, E., Mohler, W., & Vignery, A. (2007). Cell-cell fusion. FEBS Lett, 581(11), 2181-2193. doi:10.1016/j.febslet.2007.03.033
Dunwell, J. L., Ahmad, F., & Rose, A. H. (1961). Changes in Polysaccharide Composition of Yeast Resulting from Biotin Deficiency. Biochimica Et Biophysica Acta, 51(3), 604-&. doi:Doi 10.1016/0006-3002(61)90626-6
Engel, S. R., Dietrich, F. S., Fisk, D. G., Binkley, G., Balakrishnan, R., Costanzo, M. C., . . . Cherry, J. M. (2014). The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now. G3-Genes Genomes Genetics, 4(3), 389-398. doi:10.1534/g3.113.008995
Fabrizio, P., & Longo, V. D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2), 73-81.
Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., & Fink, G. R. (1992). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell, 68(6), 1077-1090.
Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., . . . Oliver, S. G. (1996). Life with 6000 genes. Science, 274(5287), 546, 563-547.
Gonzalez-Barrera, S., Garcia-Rubio, M., & Aguilera, A. (2002). Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics, 162(2), 603-614.
Hoeijmakers, J. H. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411(6835), 366-374. doi:10.1038/35077232
Hohmann, S. (2002). Osmotic adaptation in yeast-control of the yeast osmolyte system. International Review of Cytology - a Survey of Cell Biology, Vol 215, 215, 149-187.
Jaspersen, S. L., & Morgan, D. O. (2000). Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol, 10(10), 615-618.
Jazwinski, S. M. (2002). Biological aging research today: potential, peeves, and problems. Exp Gerontol, 37(10-11), 1141-1146.
Jungwirth, H., & Kuchler, K. (2006). Yeast ABC transporters-- a tale of sex, stress, drugs and aging. FEBS Lett, 580(4), 1131-1138. doi:10.1016/j.febslet.2005.12.050
Kierek-Pearscon, K., & Karatan, E. (2005). Biofilm development in bacteria. Advances in Applied Microbiology, Vol 57, 57, 79-111. doi:10.1016/S0065-2164(05)57003-5
Kim, H. Y., Lee, S. B., Kang, H. S., Oh, G. T., & Kim, T. (2014). Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11. Biochem Biophys Res Commun, 449(2), 202-207. doi:10.1016/j.bbrc.2014.04.161
Koschwanez, J. H., Foster, K. R., & Murray, A. W. (2011). Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity. PLoS Biol, 9(8). doi:ARTN e1001122
10.1371/journal.pbio.1001122
Lesage, G., & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 70(2), 317-343. doi:10.1128/MMBR.00038-05
Levin, D. E. (2005). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 69(2), 262-291. doi:10.1128/MMBR.69.2.262-291.2005
Li, J. R., Wang, L., Wu, X. P., Fang, O., Wang, L. W., Lu, C. Q., . . . Luo, Z. W. (2013). Polygenic Molecular Architecture Underlying Non-Sexual Cell Aggregation in Budding Yeast. DNA Research, 20(1), 55-66. doi:10.1093/dnares/dss033
Mable, B. K., & Otto, S. P. (2001). Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genet Res, 77(1), 9-26.
MacLean, M., Harris, N., & Piper, P. W. (2001). Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast, 18(6), 499-509. doi:10.1002/yea.701
Mayer, V. W., & Aguilera, A. (1990). High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res, 231(2), 177-186.
Moore, J. K., & Haber, J. E. (1996). Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 16(5), 2164-2173.
Mortimer, R. K. (2000). Evolution and variation of the yeast (Saccharomyces) genome. Genome Res, 10(4), 403-409.
Mortimer, R. K., & Johnston, J. R. (1986). Genealogy of principal strains of the yeast genetic stock center. Genetics, 113(1), 35-43.
Mukherjee, P. K., Zhou, G. Y., Munyon, R., & Ghannoum, M. A. (2005). Candida biofilm: a well-designed protected environment. Medical Mycology, 43(3), 191-208. doi:10.1080/13693780500107554
Murakami, C. J., Wall, V., Basisty, N., & Kaeberlein, M. (2011). Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS One, 6(9), e24530. doi:10.1371/journal.pone.0024530
Orr-Weaver, T. L., Szostak, J. W., & Rothstein, R. J. (1981). Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A, 78(10), 6354-6358.
Ouspenski, II, Elledge, S. J., & Brinkley, B. R. (1999). New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability. Nucleic Acids Res, 27(15), 3001-3008.
Paques, F., & Haber, J. E. (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 63(2), 349-404.
Paquin, C., & Adams, J. (1983). Frequency of Fixation of Adaptive Mutations Is Higher in Evolving Diploid Than Haploid Yeast Populations. Nature, 302(5908), 495-500. doi:DOI 10.1038/302495a0
Park, P. U., McVey, M., & Guarente, L. (2002). Separation of mother and daughter cells. Methods Enzymol, 351, 468-477.
Promislow, D. E., & Tatar, M. (1998). Mutation and senescence: where genetics and demography meet. Genetica, 102-103(1-6), 299-314.
Qin, H., & Lu, M. (2006). Natural variation in replicative and chronological life spans of Saccharomyces cerevisiae. Exp Gerontol, 41(4), 448-456. doi:10.1016/j.exger.2006.01.007
Rodriguez, M. E., Orozco, H., Cantoral, J. M., Matallana, E., & Aranda, A. (2014). Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast. FEMS Yeast Res, 14(6), 845-857. doi:10.1111/1567-1364.12173
Rothstein, R. (1991). Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol, 194, 281-301.
Scherz, R., Shinder, V., & Engelberg, D. (2001). Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol, 183(18), 5402-5413.
Shapiro, J. A. (1998). Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology, 52, 81-104. doi:DOI 10.1146/annurev.micro.52.1.81
Shou, W. Y., Seol, J. H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z. W. S., . . . Deshaies, R. J. (1999). Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell, 97(2), 233-244. doi:Doi 10.1016/S0092-8674(00)80733-3
Stewart, G. G. (2009). The Horace Brown Medal Lecture: Forty Years of Brewing Research. Journal of the Institute of Brewing, 115(1), 3-29. doi:DOI 10.1002/j.2050-0416.2009.tb00340.x
Stratford, M., & Assinder, S. (1991a). Yeast Flocculation - Flo1 and Newflo Phenotypes and Receptor Structure. Yeast, 7(6), 559-574. doi:DOI 10.1002/yea.320070604
Stratford, M., & Assinder, S. (1991b). Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast, 7(6), 559-574. doi:10.1002/yea.320070604
Teixeira, J. A., & Mota, M. (1990). Experimental Assessment of Internal Diffusion Limitations in Yeast Flocs. Chemical Engineering Journal and the Biochemical Engineering Journal, 43(1), B13-B17. doi:Doi 10.1016/0300-9467(90)80047-G
Thorpe, P. H., Gonzalez-Barrera, S., & Rothstein, R. (2007). More is not always better: the genetic constraints of polyploidy. Trends in Genetics, 23(6), 263-266. doi:10.1016/j.tig.2007.03.016
Verstrepen, K. J., Reynolds, T. B., & Fink, G. R. (2004). Origins of variation in the fungal cell surface. Nature Reviews Microbiology, 2(7), 533-540. doi:10.1038/nrmicro927
Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M., & Amon, A. (1998). The phosphatase Cdc14 triggers mitotic exit by reversal of CDK-dependent phosphorylation. Mol Cell, 2(6), 709-718. doi:Doi 10.1016/S1097-2765(00)80286-5
Visintin, R., Hwang, E. S., & Amon, A. (1999). Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature, 398(6730), 818-823.
Wang, Y., & Ng, T. Y. (2006). Phosphatase 2A negatively regulates mitotic exit in Saccharomyces cerevisiae. Mol Biol Cell, 17(1), 80-89. doi:10.1091/mbc.E04-12-1109
Wang, Y. C., Shirogane, T., Liu, D., Harper, J. W., & Elledge, S. J. (2003). Exit from exit: Resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell, 112(5), 697-709. doi:Doi 10.1016/S0092-8674(03)00121-1
Yarbro, J. W. (1992). Mechanism of action of hydroxyurea. Semin Oncol, 19(3 Suppl 9), 1-10.
Yvert, G., Brem, R. B., Whittle, J., Akey, J. M., Foss, E., Smith, E. N., . . . Kruglyak, L. (2003). Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet, 35(1), 57-64. doi:10.1038/ng1222
Zobell, C. E. (1943). The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46(1), 39-56.