| 研究生: |
陳正浩 Chen, Cheng-Hao |
|---|---|
| 論文名稱: |
針對HEVC之快速編碼單元決策 A Fast CU Size Decision Algorithm for High Efficiency Video Coding |
| 指導教授: |
賴源泰
Lai, Yen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 高效率視訊編碼 、編碼單元尺寸決策 |
| 外文關鍵詞: | HEVC, CU size decision |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
High Efficiency Video Coding (HEVC) 是最新一代的視訊壓縮標準。和前幾代標準相較之下,它提供更佳的壓縮效能。HEVC 採取了四元樹結構,它允許以Coding Unit Tree (CTU) 為起點進行遞迴編碼。四元樹結構是導致壓縮效能提升的一大因素,但同時也提升了運算複雜度。
為了降低運算複雜度,於是我們提出了一個快速編碼單元決策演算法。此決策的演算法是由彈性的深度範圍和提早裁剪的測試所組成。首先,針對一塊CTU 編碼時,我們用彈性的深度範圍而不是固定的深度範圍。接著,針對每塊Coding Unit (CU),我們會執行早期裁剪的測試,此測試是根據貝氏定理所制定而出。
相較於HEVC test model 12.0 (HM 12.0),從實驗結果得知,我們所提出的演算法平均可以節省60.11%的編碼時間,同時會增加2.4%的位元率和0.1dB的亮度PSNR失真。
High Efficiency Video Coding (HEVC) is the newest video coding standard. It provides the better compression performance compared with the existing standards. HEVC adopts the quad-tree structure which allows recursive splitting into four equally sized nodes, starting from the Coding Tree Unit (CTU). The quad-tree structure causes the better compression efficiency, but it requires the higher computational complexity.
In order to reduce the computational complexity, we propose a fast CU size decision algorithm. The proposed algorithm consists of adaptive depth range and early pruning test. First, we use adaptive depth range instead of fixed depth range for a CTU encoding. Then, for each CU, the early pruning test is performed at each depth level according to Bayes rule based on the full RD costs.
Compared with the HEVC test model 12.0 (HM 12.0), experimental results show the proposed method achieves the reduction of encoding time by 60.11%, the increment of bitrate by 2.4%, and 0.1 dB Y-PSNR loss, on average.
[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K, Wang, and T. Wiegand, High Efficiency Video Coding (HEVC) text specification draft 10, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC), document JCTVC-L1003_v34, Jan. 2013.
[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 22, no 12, pp. 1649-1668, Dec. 2012.
[3] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC Video Coding Standard,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 13, no 7, pp. 560-576, Jul. 2003.
[4] I.-K. Kim, K. McCann, K. Sugimoto, B. Bross, W.-Jin. Han, and G. Sullivan, High Efficiency Video Coding (HEVC) Test Model 12 (HM 12) Encoder Description, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC), document JCTVC-N1002, Aug. 2013.
[5] HM 12.0 Reference Software [Online]. Available: https://hevc.hhi.fraunhofer.
de/svn/svn_HEVCSoftware
[6] J. Lainema, F. Bossen, W.-J Han, J. Min, and K. Ugur, “Intra Coding of the HEVC Standard,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 22, no 12, pp. 1792-1801, Dec. 2012.
[7] J. Sole, R. Joshi, N. Nguyen, T. Ji, M. Karczewicz, G. Clare, F. Henry, and A. Duenas, “Transform Coefficient Coding in HEVC,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 22, no 12, pp. 1765-1777, Dec. 2012.
[8] V. Sze, and M. Budagavi, “High Throughput CABAC Entropy Coding in HEVC,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 22, no 12, pp. 1778-1791, Dec. 2012.
[9] A. Norkin, G. Bjøntegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Anderssom, M. Zhou, and G. V. D. Auwera, “HEVC Deblocking Filter,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 22, no 12, pp. 1746-1754, Dec. 2012.
[10] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai, C.-W. Hsu, S.-M. Lei, J.-H. Park, and W.-J. Han, “Sample Adaptive Offset in the HEVC Standard,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 22, no 12, pp. 1755-1764, Dec. 2012.
[11] H. Zhang and Z. Ma, “Fast intra mode decision for High Efficiency Video Coding (HEVC),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 4, pp. 660-668, Apr. 2014.
[12] L. Shen, Z. Zhang, and P. An, “Fast CU Size Decision and Mode Decision Algorithm for HEVC Intra Coding,” IEEE Transactions on Consumer Electronics, vol. 59, no. 1, pp 207-213, Feb. 2013.
[13] L. Shen, Z. Lin, X. Zhang, W. Zhao, and Z. Zhang, “An Effective CU Size Decision Method for HEVC encoders,” IEEE Transactions on Multimedia, vol. 15, no. 2, pp. 465-470, Feb. 2013.
[14] L. Shen, Z. Zhang, and Z. Liu, “Adaptive Inter-Mode Decision for HEVC Jointly Utilizing Inter-Level and Spatiotemporal Correlations,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 10, pp. 1709-1722, Oct. 2014.
[15] L. Shen, Z. Zhang, and Z. Liu, “Effective CU Size Decision for HEVC Intra coding,” IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4232-4241 Oct. 2014.
[16] S. Cho and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU Partitioning in HEVC Intra Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 9, pp. 1555-1564, Sep. 2013.
[17] J. Kim, Y. Choe, and Y. G. Kim, “Fast Coding Unit Size Decision Algorithm for Intra Coding in HEVC,” IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, Jan. 2013, pp. 637-638.
[18] W. Jiang, H. Ma, and Y. Chen, “Gradient based fast mode decision algorithm for intra prediction in HEVC,” International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, Apr. 2012, pp. 1836-1840.
[19] F. Bossen, Common Test Conditions and Software Reference Configurations, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC), document JCTVC-L1100, Jan. 2013.