| 研究生: |
潘欣長 Pan, Shin-Jang |
|---|---|
| 論文名稱: |
基因演算法在某類資料取樣系統控制之應用 Applications of Genetic Algorithms on Control of Some Classes of Sampled-Data Systems |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 基因演算法 、殊異擾動系統 、數位再設計 、演化式規劃 |
| 外文關鍵詞: | genetic algorithm, singular system, digital-redesign, evolutionary programming |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對某類資料取樣系統,本論文提出應用基因演算法在以觀測器為基礎之控制器設計。本文涵蓋四個主題:第一主題,提出基因演算法應用於具離散多時延奇異系統之控制器設計。首先產生相對於原系統之快、慢子系統,並應用基因演算法設計各子系統對應之控制器,再藉由合成子系統控制器產生適合原系統之狀態回授控制器。原系統穩定度之確認方面,在系統參數滿足某些條件時,可藉由各子系統穩定度的確認而獲得。在第二主題中,提出針對離散多時延奇異系統,應用基因演算法設計以觀測器為基礎之特定圓穩定(Disk stability)控制器,並將第一主題中有關控制與穩定度之分析範圍由單位圓內擴展至特定圓內。另外,提出與原系統擾動參數有關之穩定度條件,以確保在以觀測器為基礎之合成控制器控制下原系統之穩定度。在第三主題提出,針對未知但具時延之取樣互聯大尺度線性殊異系統,建構其分散線性模式,並設計以觀測器為基礎的追蹤器。首先經由離線觀測器/卡爾門濾波器辨識,產生較低階分散控制線性觀測器,然後求出相對應之具高增益線性二次式次最佳化類比觀測器及追蹤器,使得受控之閉迴路具有分散解耦的特性。接著利用以預測為基礎之數位再設計方法,得到實務上可執行之數位觀測器及追蹤器。最後,藉由演化式規劃獲得各分散觀測器更適合之權重調整,以改善以觀測器為基礎之追蹤器效能。第四主題則對某類雙線性控制系統提出狀態回授控制器,使得系統輸出為穩定週期解,成為可調振幅之震盪器。當系統未知時,設計以觀測器為基礎的追蹤器,並藉由基因演算法改善追蹤器效能。
This dissertation is dedicated to develop applications of genetic algorithm (GA) on controller design for some classes of sampled-data systems. It covers four topics: First, an application of GA on control for discrete multiple time-delayed singular system is proposed. The compact state feedback controllers for the slow and the fast subsystems are separately designed by a GA and then a composite state feedback controller is synthesized. Stability of original system is confirmed by establishing that of its corresponding slow and fast subsystems if any one criteria of the condition is satisfied. Secondly, a GA application is extended to the observer-based Disk-stability controller design for the system in first topic. Moreover, a -dependent upon stability condition is proposed to guarantee the stability of the original system under the composite observer-based controller. The third topic is to propose the modeling of decentralized linear observers and trackers for the unknown sampled-data interconnected large-scale linear singular system with time-delayed. Through the off-line observer / Kalman filter identification, the appropriate order decentralized linear observers are determined. Then, the corresponding high-gain linear quadratic suboptimal analogue observer and tracker are proposed such that the system has closed-loop decoupling property. Subsequently, the prediction-based digital redesign method is utilized to obtain practically implemental digital observer and tracker for the sampled-data system. Finally, appropriate weighting of the each decentralized observer can be obtained to improve the performance of observer-based tracker by the evolutionary programming. The fourth topic is to propose a feedback control for a class of bilinear systems and the exponentially stable periodic solutions are guaranteed. If the system is unknown, we first construct the observer-based tracker and use GA to tune the observer gain to improve the tracking performance.
[1] P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York, 1986.
[2] H. K. Khalil, “Feedback control of nonstandard singularly perturbed systems,” IEEE Transactions on Automatic control, vol. 34, pp. 1052-1060, 1989.
[3] F. H. Hsiao, J. D. Hwang, “Stabilization of nonlinear singularly perturbed multiple time-delay systems by dither,” ASME J. Dynamic Systems, Measurement, and Control, vol. 18, pp. 176-181, 1996.
[4] K. C. Yao, and C. H. Hsu, “Robust optimal stabilizing observer-based control design of decentralized stochastic singularly-perturbed computer controlled systems with multiple time-varying delays,” International Journal of Innovative Computing, Information and Control, vol. 5(2), pp. 467-478, 2009.
[5] K. C. Yao, “Reliable robust output feedback stabilizing computer control of decentralized stochastic singularly-perturbed systems,” ICIC Express Letters, vol. 1(1), pp. 1-7, 2007.
[6] K. C. Yao, and F. Q. Cai, “Robustness and reliability of decentralized stochastic singularly-perturbed computer controlled systems with multiple time-varying delays,” ICIC Express Letters, vol. 3(3A), pp. 379-384, 2009.
[7] H. J. Wang, A. K. Xue, Y. F. Guo, and R. Q. Lu, “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays,” Journal of Zhejiang University-Science A, vol. 9, pp. 546-551, 2008.
[8] J. S. H. Tsai, C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems,” Journal of Franklin Institute, vol. 30, pp. 1063-1086, 1993.
[9] B. G. Mertzios, M. A. Christodoulou, B. L. Syrmos, and F. L. Lewis, “Direct controllability and observability time domain conditions of singular systems,” IEEE Transactions on Automatic Control, vol. 33, pp. 788-791, 1988.
[10] C. J. Wang, and H. E. Liao, “Impulse observability and impulse controllability of linear time-varying singular systems,” Automatica, vol. 37, pp. 1867-1872, 2001.
[11] P. A. Ioannou, and J. Sun, Robust Adaptive Control. Prentice Hall, New Jersey, 1996.
[12] D. T. Gavel, and D. D. Seljuk, “Decentralized adaptive control: structural conditions for stability,” IEEE Transactions on Automatic Control, vol. 34, pp. 413-426, 1989.
[13] L. Shi, and S. K. Singh, “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Transactions on Automatic Control, vol. 37, pp. 1106-1118, 1992.
[14] R. Ortega, and A. Herrera, “A solution to the decentralized adaptive stabilization problem,” Systems and Control Letters, vol. 20, pp. 299-306, 1993.
[15] A. Datta, “Performance improvement in decentralized adaptive control: A modified model reference scheme,” IEEE Transactions on Automatic Control, vol. 38, pp. 1717-1722, 1993.
[16] Y. H. Chen, G. Leitmann, and Z. K. Xiong, “Robust control design for interconnected systems with time-varying uncertainties,” International Journal of Control, vol. 54, pp. 1119-1124, 1991.
[17] C. Wen, “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” Proceedings of the 33rd conference on Decision and Control, Lake Buena Vista, FL, pp. 1187-1192, 1994.
[18] C. Wen, “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Transactions on Automatic Control, vol. 38, pp. 1122-1126, 1995.
[19] K. Ikeda, and S. Shin, “Fault tolerant decentralized control systems using backstepping,” Proceedings of the 33rd conference on Decision and Control, New Orleans, LA, pp. 2340-2345, Dec 14 - Dec 16, 1995.
[20] P. R. Pagilla, “Robust decentralized control of large-scale interconnected systems: General interconnections,” Proceedings of American Control Conference, San Diego, CA, pp. 4527-4531, June 2 - June 4, 1999.
[21] O. Huseyin, M. E. Sezer, and D. D. Siljak, “Robust decentralized control using output feedback,” IEE Proceedings, vol. 129, pp. 310-314, 1982.
[22] A. Datta, and P. A. Ioannou, “Decentralized indirect adaptive control of interconnected systems,” International Journal of Adaptive Control and Signal Processing, vol. 5, pp. 259-281, 1991.
[23] K. S. Narendra, and A. M. Annaswamy, Stable Adaptive Systems. Prentice-Hall, Upper Saddle River, New Jersey, 1989.
[24] J. S. H. Tsai, N. T. Hu, P. C. Yang, S. M. Guo, and L. S. Shieh, “Modeling of decentralized linear observer and tracker for a class of unknown interconnected large-scale sampled-data nonlinear system with closed-loop decoupling property,” Computers and Mathematics with Applications, vol. 60, pp. 541-562, 2010.
[25] A. E. Eiben, and J. E. Smith, Introduction to Evolutionary Computing. Springer-Verlag, Berlin Heidelberg, 2003.
[26] Z. Michalewicz, Genetic Algorithm + Data Structures = Evolutionary Programs. Springer-Verlag, Berlin Heidelberg, 1999.
[27] Z. N. Zacharis, and T. Panayiotopoulos, “A metagenetic algorithm for information filtering and collection from World Wild Web,” Expert Systems, vol. 18, pp. 99-108, 2001.
[28] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Massachusetts, 1989.
[29] Y. Wan, “Fuzzy clustering analysis by using genetic algorithm,” International Journal of Innovative Computing, Information and Control, vol. 2(4), pp. 331-337, 2008.
[30] Y. Wu, P. Ji, and T. Wang, “An empirical study of a pure genetic algorithm to solve the capacitated vehicle routing problem,” International Journal of Innovative Computing, Information and Control, vol. 2(1), pp. 41-45, 2008.
[31] X. Zhang, Q. Lu, S. Wen, M. Wu, and X. Wang, “A modified differential evolution for constrained optimization,” International Journal of Innovative Computing, Information and Control, vol. 2(2), pp. 181-186, 2008.
[32] C. C. Chen, “Global exponential stabilization for nonlinear singularly perturbed systems,” IEE Proc.: Control Theory Application, vol. 145, pp. 377-382, 1998.
[33] F. H. Hsiao, S. T. Pan, and J. G. Hsieh, “Stability analysis for a class of uncertain discrete singularly perturbed systems with multiple time delays,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 124, pp. 467-472, 2002.
[34] F. H. Hsiao, S. T. Pan, and C. C. Teng, “An efficient algorithm for finding the D-stability bound of discrete singularly perturbed systems with multiple time delays,” International Journal of Control, vol. 72(1), pp. 1-17, 1999.
[35] F. H. Hsiao, J. D. Hwang, and S. T. Pan, “Stabilization of discrete singularly perturbed systems under composite observer-based control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 123, pp. 132-139, 2001.
[36] Z. N. Zacharis, and T. Panayiotopoulos, “A metagenetic algorithm for information filtering and collection from World Wild Web,” Expert Systems, vol. 18, pp. 99-108, 2001.
[37] C. H. Fang, L. Lee, and F. R. Chang, “Robust control analysis and design for discrete-time singular systems,” Automatica, vol. 30, pp. 1741-1750, 1994.
[38] J. H. Chou, W. H. Liao, and I. R. Horng, “Stability robustness of discrete-time perturbed descriptor systems,” IMA Journal of Mathematical Control and Information, vol. 17, pp. 257-263, 2000.
[39] S. Xu, J. Lam, and Q. L. Zhang, “Robust D-stability analysis for uncertain discrete singular systems with state delay,” IEEE Transactions on Circuits and Systems (I), vol. 49, pp. 551-555, 2002.
[40] Ming-Jer Lin, Novel Design Methodologies for Quadratic Observers and Trackers of Sampled- data Linear Singular System, M.S. Thesis, Cheng-Kung University, Tainan, Taiwan, 2009.
[41] J. N. Juang, Applied System Identification. Prentice-Hall, New Jersey, 1994.
[42] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker a prediction based digital redesign approach,” IEEE Transactions on Circuits and System-I , Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
[43] J. H. Chou, and B.S. Chen, “New approach for the stability analysis of interval matrices,” Control-Theory and Advanced Technology, vol. 6, pp. 725-730, 1990.
[44] M. S. Mahmoud, “Order reduction and control of discrete systems,” IEE Proc.-Control Theory Appl., vol. 129, pp. 129-135, 1982.
[45] V. R. Saksena, J. O’Reilly, and P. V. Kokotovic, “Singular perturbations and time scale methods in control theory-survey 1976-1983,” Automatica, vol. 20, pp. 273-293, 1984.
[46] W. D. John, Applied Complex Variables. Macmillan, New York, 1967.
[47] D. S. Naidu, and A. K. Rao, Singular Perturbation Analysis of Discrete Control Systems. Springer-Verlag, Berlin, 1985.
[48] T. H. S. Li, and J. H. Li, “Stabilization bound of discrete two-time-scale systems,” Systems and Control Lettters, vol. 18, pp. 479-489, 1992.
[49] H. Oloomi, and M. E. Sawan, “The observer-based controller design of discrete-time singularly perturbed systems,” IEEE Transactions on Automatic Control, vol. 32, pp. 246-248, 1987.
[50] B. Litkouhi, and H. Khalil, “Multirate and composite control of two-time-scale discrete-time systems,” IEEE Transactions on Automatic Control, vol. 30, pp. 645-651, 1985.
[51] L. S. Shieh, Y. T. Tsay, and R. E. Yates, “Some properties of matrix-sign functions derived from continued fractions,” IEE Proceedings D: Control Theory and Applications, vol. 130, pp. 111-118, 1983.
[52] M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman, “Linear system identification via an asymptotically stable observer,“ Journal of Optimization Theory and Applications, vol. 79, pp. 59-86, October, 1993.
[53] S. M. Guo, L. S. Shieh, G. Chen, C. F. Lin, and N. P. Coleman, “Evolutionary-programming-based Kalman filter for discrete-time nonlinear uncertain systems,” Asian Journal of Control, vol. 3(4), pp. 319-333, 2001.
[54] J. D. Roberts, “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,” International Journal Control, vol. 32, pp. 677-687, 1980.
[55] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transaction Circuits and Systems-I: Fundamental Theory and Applications, vol. 50, pp. 1595-1600, 2003.
[56] F. R. Ganmacher, The Theory of Matrices II. Chelsea, New York, 1974.
[57] R. Nikoukhah, A. S. Willsky, and B. C. Levy, “Boundary-value descriptor systems:Well-posedness, reachability and observability,” International Journal of Control, vol. 46, pp. 1715-1737, 1987.
[58] S. L. Campbell, Singular Systems of Differential Equations I. Pitman, San Francisco, 1982.
[59] S. H. Lee, and T. T. Lee, “Optimal pole assignment for a discrete linear regulator with constant disturbances,” International Journal Control, vol. 45, pp.161-168, 1987.
[60] A. Vicino, “Robustness of pole location in perturbed systems,” Automatic, vol. 25, pp. 109-113, 1989.
[61] S. J. Pan, J. S. H. Tsai, “The application of genetic algorithm on control of discrete multiple time-delay singularly perturbation systems,” Eighth International Conference on Intelligent Systems Design and Appliation (ISDA, 2008 IEEE), Kaohsiung, Taiwan, pp. 531-536, 2008.
[62] S. J. Pan, J. S. H. Tsai, and S. T. Pan, “Application of genetic algorithm on observer-based D-stability control for discrete multiple time-delay singularly perturbation systems,” International Journal of Innovative Computing, Information and Control, vol. 7(5), pp. 3345-3358, 2009.
[63] J. S. H. Tsai, S. J. Pan, W. C. Liao, S. M. Guo, and L. S. Shieh, “Modeling of decentralized observers and trackers for large-scale singular system with time delay abd closed-loop decoupling property,” Proceedings of the IASTED International Conference, Modelling, Identification, and Control (AsiaMIC 2010), Phuket, Thailand, pp. 318-325, 2010.
[64] S. J. Pan, J. S. H. Tsai, and Y. J. Sun, “Periodic solutions design for feedback bilinear systems,” International Journal of Nonlinear Science, vol. 8(2), pp. 141-147, 2009.
[65] L. Tian, G. Dong, “Predictive control of sudden occurrence of chaos,” International Journal of Nonlinear Science, vol. 5(2), pp. 99-105, 2008.
[66] H. Ni, F. Lin, “The existence of almost periodic solutions of several classes of second order differential equations,” International Journal of Nonlinear Science, vol. 2(2), pp. 83-91, 2006.
[67] S. Engelberg, “Limitations of the describing function for limit cycle prediction,” IEEE Tranactions on Automatic Control, vol. 47, pp. 814-819, 2002.
[68] R. Genesio, P. Nistri, “On the limit cycles in feedback bilinear systems,” The 27th Proceedings of the IEEE Conference on Decision and control, Austin, Texas, USA., pp. 946-947, 1988.
[69] Y. Li, J. Zhang, and Z. Liu, “Circadian oscillators and phase synchronization under a light-dark cycle,” International Journal of Nonlinear Science, vol. 1(2), pp. 131-138, 2006.
[70] G. Cai, W. Zhou, and Z. Tan, “Stabilization of high periodic orbits of discrete-time chaotic systems,” International Journal of Nonlinear Science, vol. 4(2), pp. 118-126, 2007.
[71] Sh. Salem, and K. R. Raslan, “Oscillation of some second order damped difference equations,” International Journal of Nonlinear Science, vol. 5(3), pp. 246-254, 2008.
[72] Z. J. Palmor, Y. Halevi, and T. Efrati, “A general and exact method for determining limit cycles in decentralized relay systems,” Automatica, vol. 31, pp. 1333-1339, 1995.
[73] R. Genesio, and A. Tesi, “A harmonic balance approach for chaos prediction: Chua’s circuit,” International Journal of Bifurcation and Chaos, vol. 2, pp. 61-79, 1992.
[74] J. I. Ramos, “Piecewise-linearized methods for oscillators with limit cycles,” Chaos, Solitons and Fractals, vol. 27, pp. 1229-1238, 2006.
[75] Y. J. Sun, “Prediction of limit cycles in feedback bilinear systems:Lyapunov-like approach,” The Proceeding of 2002 National Symposium on Automatic Control, pp. 801-805, 2002.
[76] Jean-Jacques E. Slotine, and W. Li, Applied Nonlinear Control. Prentice-Hall, New Jersey, 1991.
[77] R. R. Mohler, Bilinear Control Process. Academic Press, New York, 1973.
[78] J. H. He, “Variational approach for nonlinear oscillators,” Chaos, Solitons and Fractals, vol. 34, pp. 1430-1439, 2007.