| 研究生: |
陳緯倫 Chen, Wei-Lun |
|---|---|
| 論文名稱: |
利用無網格節點積分方法分析多重物理耦合問題 Analysis of Multi-physics Problems by Using Nodal Integration Meshfree Methods |
| 指導教授: |
林冠中
Lin, Kuan-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 壓電材料 、電磁彈性體 、無網格法 、RKPM 、SCNI 、NSNI |
| 外文關鍵詞: | piezoelectric, magneto-electro-elastic, meshfree, RKPM, SCNI, NSNI |
| 相關次數: | 點閱:108 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用無網格節點積分方法,對智慧材料壓電材料及電磁彈性體,進行靜態載重分析。研究中使用再生核質點法(Reproducing Kernel Particle Method, RKPM)建構形狀函數,並採用穩定一致節點積分法(Stabilized conforming nodal integration, SCNI)進行數值積分,若結果產生震盪或誤差,則使用自然穩定節點積分法(Naturally stabilized nodal integration, NSNI)進行修正。本研究專注於壓電材料和電磁彈性體,兩種材料皆屬於智慧材料,具有物理場相互轉換的耦合特性,分析智慧材料主要由能量形式出發,並利用最小勢能原理做推導,最後成功使用無網格法進行數值分析。經數值例題測試,從壓電材料與電磁彈性體的數值分析結果可知,NSNI修正方法均能有效改善SCNI方法的計算結果,使其更接近有限元素法的數值,並改善震盪的情況。在固定梁與集中載重條件下,該方法表現尤為出色。本研究成功將無網格法節點積分法應用於物理多重耦合問題的有效分析,為相關領域提供了一個新的解決方案。
This study applies meshfree nodal integration methods to perform static load analysis on smart materials, including piezoelectric materials and magneto-elastic materials. The Reproducing Kernel Particle Method (RKPM) is used to construct shape functions, and Stabilized Conforming Nodal Integration (SCNI) is employed for numerical integration. If oscillations or errors occur in the results, Naturally Stabilized Nodal Integration (NSNI) is applied for correction. This research focuses on piezoelectric materials and magnetoelastic materials, both of which are smart materials with coupling characteristics enabling conversion between physical fields. The analysis of smart materials is primarily based on energy forms and derived using the minimum potential energy principle, successfully utilizing meshfree methods for numerical analysis.
Through numerical example tests, the results of the numerical analysis of piezoelectric materials and magneto-elastic materials show that the NSNI correction method can effectively improve the calculation results of the SCNI method, making them closer to the values obtained using the Finite Element Method and improving oscillations. The method performs exceptionally well under fixed beam and concentrated load conditions. This study successfully applies meshfree nodal integration methods to eectively analyze multi-physics coupling problems, providing a new solution for related fields.
[1] Leon B lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, vol. 82, p. 1013-1024., 82: 1013—1024,1977.
[2] Wing-Kam Liu, Sukky Jun, and Yi-Fei Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8-9):1081–1106, 1995.
[3] Michael Hillman, Jiun-Shyan Chen, and Yuri Bazilevs. Variationally consistent domain integration for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 284:521–540, 2015.
[4] Jiun-Shyan Chen, Cheng-Tang Wu, Sangpil Yoon, and Yang You. A stabilized conforming nodal integration for galerkin mesh-free methods. International journal for numerical methods in engineering, 50(2):435–466, 2001.
[5] Michael Hillman and Jiun-Shyan Chen. An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. International Journal for Numerical Methods in Engineering, 107(7):603–630, 2016.
[6] Jacques Curie and Pierre Curie. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de minéralogie, 3(4):90–93, 1880.
[7] Pierre Curie. Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. Journal de physique théorique et appliquée, 3(1):393–415, 1894.
[8] Hornsen Tzou and Chih I Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. Journal of sound and vibration, 138(1):17–34, 1990.
[9] Clinton YK Chee, Liyong Tong, and Grant P Steven. A mixed model for composite beams with piezoelectric actuators and sensors. Smart materials and Structures, 8(3):417, 1999.
[10] Hieu Nguyen-Van, Nam Mai-Duy, and Thanh Tran-Cong. A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES Computer Modeling in Engineering and Sciences, 23(3):209–222, 2008.
[11] Tinh Quoc Bui, Minh Ngoc Nguyen, Chuanzeng Zhang, and Dinh Anh Khoi Pham. An efficient meshfree method for analysis of two-dimensional piezoelectric structures. Smart materials and structures, 20(6):065016, 2011.
[12] Jan Sladek, Vladimir Sladek, Peter Stanak, Chuanzeng Zhang, and Michael Wünsche. Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a mlpg method. Engineering Structures, 47:81–89, 2013.
[13] Peter Stanak, António Tadeu, Jan Sladek, and Vladimir Sladek. Meshless analysis of piezoelectric sensor embedded in composite floor panel. Journal of Intelligent Material Systems and Structures, 26(15):2092–2107, 2015.
[14] Hubert Hsueh-Hsien Lu, Der-Liang Young, Jan Sladek, and Vladimir Sladek. Threedimensional analysis for functionally graded piezoelectric semiconductors. Journal of Intelligent Material Systems and Structures, 28(11):1391–1406, 2017.
[15] J Van Suchtelen. Product properties: a new application of composite materials. Phillips Research Reports, 27:28–37, 1972.
[16] A.M.J.G. Van Run, D.R. Terrell, and J.H. Scholing. An in situ grown eutectic magnetoelectric composite material: part 2 physical properties. Journal of Materials Science, 9:1710–1714, 1974.
[17] Ai-Min Jiang and Hao-Jiang Ding. Analytical solutions to magneto-electro-elastic beams. Structural Engineering and Mechanics, An Int’l Journal, 18(2):195–209, 2004.
[18] Anandkumar Annigeri, N Ganesan, and Swarnamani Seetharaman. Static studies on magneto-electro-elastic beam. In Proceedings of the ISSS 2005 International Conference on Smart Materials Structures and Systems, Bangalore, 2005.
[19] Ai-Min Jiang, Hao-Jiang Ding, and Guo-Quan Wu. Green's functions for a two -phase infinite magneto-electro-elastic plane. Multidiscipline Modeling in Materials and Structures, 2(1):67–82, 2006.
[20] Federico C Buroni and Andrés Sáez. Three-dimensional green's function and its derivative for materials with general anisotropic magneto-electro-elastic coupling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2114):515–537, 2010.
[21] Ján Sládek, Vladimír Sladék, Slavomir Krahulec, and Ernian Pan. The mlpg analyses of large deflections of magnetoelectroelastic plates. Engineering Analysis with Boundary Elements, 37(4):673–682, 2013.
[22] Ján Sládek, Vladimír Sladék, Slavomir Krahulec, Ching-Shyang Chen, and Der-Liang Young. Analyses of circular magnetoelectroelastic plates with functionally graded material properties. Mechanics of Advanced Materials and Structures, 22(6):479–489, 2015.
[23] Jun Liu, Peng-Chong Zhang, Gao Lin, Wen-Yuan Wang, and Shan Lu. Solutions
for the magneto-electro-elastic plate using the scaled boundary finite element method. Engineering Analysis with Boundary Elements, 68:103–114, 2016.
[24] Vinyas Mahesh and Subhaschandra Kattimani. A 3d finite element static and free vibration analysis of magneto-electro-elastic beam. Coupled Systems Mechanics, 6:465–485, 12 2017.
[25] Peng-Chong Zhang, Cheng-Zhi Qi, Hong-Yuan Fang, and Xu Sun. Free vibration analysis of functionally graded magneto-electro-elastic plates with in-plane material heterogeneity. Journal of Intelligent Material Systems and Structures, 32(11):1234–1255, 2021.
[26] Jiun-Shyan Chen, Chun-Hui Pan, Cheng-Tang Wu, and Wing-Kam Liu. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer methods in applied mechanics and engineering, 139(1-4):195–227, 1996.
[27] An American and National Standard. An American National Standard: IEEE Standard on Piezoelectricity. IEEE Transactions on Sonics and Ultrasonics, 31(2):8–10, 1984.
[28] Inc. The MathWorks. Partial differential equation toolbox - user's guide. pages 207–216, 2016.
[29] Tsung-Hui Huang, Hao-Yan Wei, Jiun-Shyan Chen, and Michael C Hillman. Rkpm2d: an open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations. Computational particle mechanics, 7:393–433, 2020.
[30] Jiun-Shyan Chen, Michael Hillman, and Marcus Rüter. An arbitrary order variationally consistent integration for galerkin meshfree methods. International Journal for Numerical Methods in Engineering, 95(5):387–418, 2013.
[31] Soh Ai Kah and Jin-Xi Liu. On the constitutive equations of magnetoelectroelastic solids. Journal of Intelligent Material Systems and Structures, 16(7-8):597–602, 2005.
[32] Klaus-Jurgen Bathe. Finite element procedures prentice-hall. New Jersey, 1037(1),1996.