| 研究生: |
高浩瑜 Gao, Hou-Yu |
|---|---|
| 論文名稱: |
使用自適應類神經網路控制器於混合交流/直流微電網系統之性能改善 Performance Improvement of a Hybrid AC/DC Microgrid System Using an Adaptive Neural Network Controller |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 206 |
| 中文關鍵詞: | 自適應類神經網路控制器 、風力發電系統 、太陽能發電系統 、混合儲能系統 、雙向直流對交流轉換器 、混合交流/直流微電網 |
| 外文關鍵詞: | Adaptive neural network controller, wind power-generation system, photovoltaic power-generation system, hybrid energy-storage system, hybrid AC/DC microgrid |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用自適應類神經網路控制器於混合交流/直流微電網系統中的雙向交流對直流轉換器控制輸出,以調整微電網系統在併網模式、孤島模式下,分配直流微電網與交流微電網之功率傳輸、控制交流微電網之電壓及頻率。本論文使用架構是由風力發電系統、太陽能發電系統、雙向直流對直流轉換器以及雙向直流對交流轉換器所組成,其中以超級電容器與全釩氧化還原液流電池為基礎之混合儲能系統,應對再生能源波動特性,且直流微電網通過雙向直流對交流轉換器與交流側連接。類神經網路控制器亦與傳統比例-積分控制器在性能上做比較,在動態及暫態模擬案例下,於各性能表現上都有所改善。
This thesis proposes a hybrid AC/DC microgrid (MG) containing different renewable-energy power-generation systems, which consists of a wind power-generation system, a solar power-generation system, a bidirectional DC/DC converter, and a bidirectional AC/DC converter. The vanadium redox flow battery (VRFB)-based hybrid energy-storage system is connected to the DC MG via the bidirectional DC/DC converter, while the DC MG is connected to the AC MG via a bidirectional AC/DC converter. This thesis employs an adaptive neural network controller (ANNC) to distribute power transmission between the DC MG and the AC MG and control the voltage magnitude and frequency of AC MG under grid-connected mode and islanding mode, respectively. The performance of the proposed ANNC is also compared with the one of a traditional proportional-integral controller. The steady-state responses of the hybrid AC/DC MG are performed under time-domain simulations, while the dynamic and transient simulations of the hybrid AC/DC MG under different disturbance conditions are also achieved.
[1] 張永瑞、姜政綸、李奕德,微電網發展前景及技術剖析,臺灣能源期刊,第2卷,第3期,第259-278頁,2015年9月。
[2] 李奕德、張永瑞、洪穎怡、陳士麟,核研所微型電網HCPV併網衝擊分析之研究,中華民國第三十一屆電力工程研討會,崑山科技大學,台南,台灣,2011年12月3-4日。
[3] 林法正,陳彥豪,盧思穎,陳毓文,澎湖群島智慧電網示範介紹,國土及公共治理季刊,第5卷,第2期,第62-73頁,2017年7月。
[4] W. F. Rao, B. Zhang, J. F. Pan, X. Y. Wu, J. P. Yuan, and L. Qiu, “Voltage control strategy of DC microgrid with direct drive wave energy generator,” in Proc. 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA), Hong Kong, China, Dec. 12-14, 2017, pp. 1-7.
[5] T. Shi, L. Shi, Y. Zhao, and Y. Ni, “Operation and coordination control of a DC micro-grid incorporating all-DC wind farm,” The Journal of Engineering, vol. 2017, no. 13, pp. 2477-2482, Oct. 2017.
[6] A. Asheibi, A. Khalil, A. M. Elbreki, Z. Rajab, A. Alfergani, A. Mohamed, and A. Nouh, “Stability analysis of PV-based DC microgrid with communication delay,” in Proc. 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, Mar. 20-22, 2018, pp. 1-6.
[7] K. T. Tan, B. Sivaneasan, X. Y. Peng, and P. L. So, “Control and operation of a DC grid-based wind power generation system in a microgrid,” IEEE Trans. Energy Conversion, vol. 31, no. 2, pp. 496-505, Jun. 2016.
[8] Y. Da and A. Khaligh, “Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers,” in Proc. 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, Nov. 3-5, 2009, pp. 4577-4582.
[9] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, Jun. 2011.
[10] F. Zhang, Y. Yang, C. Ji, W. Wei, Y. Chen, C. Meng, Z. Jin, and Q. Zhang, “Power management strategy research for DC microgrid with hybrid storage system,” in Proc. 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, Jun. 7-10, 2015, pp. 62-68.
[11] S. Augustine, M. K. Mishra, and N. Lakshminarasamma, “Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid,” IEEE Trans. Sustainable Energy, vol. 6, no. 1, pp. 132-141, Jan. 2015.
[12] P. Prabhakaran, Y. Goyal, and V. Agarwal, “Novel nonlinear droop control techniques to overcome the load sharing and voltage regulation issues in DC microgrid,” IEEE Trans. Power Electronics, vol. 33, no. 5, pp. 4477-4487, May 2018.
[13] D. S. G. Krishna and M. Patra, “Modeling of multi-phase DC-DC converter with a compensator for better voltage regulation in DC micro-grid application,” in Proc. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, Oct. 3-5, 2016, pp. 989-994.
[14] A. A. A. Radwan and Y. A.-R. I. Mohamed, “Networked control and power management of AC/DC hybrid microgrids,” IEEE Systems Journal, vol. 11, no. 3, pp. 1662-1673, Sep. 2017.
[15] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Industry Applications, vol. 53, no. 1, pp. 567-575, Jan./Feb. 2017.
[16] A. Aderibole, H. H. Zeineldin, M. S. El-Moursi, J. C.-H. Peng, and M. A. Hosani, “Domain of stability characterization for hybrid microgrids considering different power sharing conditions,” IEEE Trans. Energy Conversion, vol. 33, no. 1, pp. 312-323, Mar. 2018.
[17] J. Chen and J. Chen, “Stability analysis and parameters optimization of islanded microgrid with both ideal and dynamic constant power loads,” IEEE Trans. Industrial Electronics, vol. 65, no. 4, pp. 3263-3274, Apr. 2018.
[18] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electronics, vol. 31, no. 5, pp. 3528-3549, May 2016.
[19] F. Mei, “Small-signal modelling and analysis of doubly-fed induction generators in wind power applications,” Ph.D. dissertation, Imperial College London, University of London, London, UK, 2008.
[20] F. Wu, X. P. Zhang, K. Godfrey and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission & Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
[21] S. Heier, Grid Integration of Wind Energy Conversion Systems, Chichester, UK: John Wiley & Son, 1998.
[22] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceedings of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
[23] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
[24] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
[25] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,2010年7月。
[26] M. Kayikci and J. V. Milanovic, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, Jun. 2007.
[27] L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 976-984, Aug. 2007.
[28] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
[29] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
[30] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
[31] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
[32] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
[33] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
[34] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
[35] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年7月。
[36] C. Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery,” in Proc. 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, Singapore, Nov. 24-27, 2008, pp. 696-701.
[37] J. A. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
[38] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007. Accessed on: Mar. 20, 2020.
[39] R. D‘Agostino, L. Baumann, A. Damiano, and E. Boggasch, “A vanadium-redox-flow-battery model for evaluation of distributed storage implementation in residential energy systems,” IEEE Trans. Energy Conversion, vol. 30, no. 2, pp. 421-430, Jun. 2015.
[40] L. Shi and M. L. Crow, “Comparison of ultracapacitor electric circuit models,” in Proc. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, Jul. 20-24, 2008, pp. 1-6.
[41] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Feb. 2010.
[42] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
[43] S. Hazra and S. Bhattacharya, “Hybrid energy storage system comprising of battery and ultra-capacitor for smoothing of oscillating wave energy,” in Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, Sep. 18-22, 2016, pp. 1-8.
[44] U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, and K. Chaudhari, “Validation of faster joint control strategy for battery- and supercapacitor-based energy storage system,” IEEE Trans. Industrial Electronics, vol. 65, no. 4, pp. 3286-3295, Sep. 2017.
[45] S. K. Kollimalla, M. K. Mishra, A. Ukil, and H. B. Gooi, “DC grid voltage regulation using new HESS control strategy,” IEEE Trans. Sustainable Energy, vol. 8, no. 2, pp. 772-781, Apr. 2017.
[46] E. Tara, S. Filizadeh, J. Jatskevich, E. Dirks, A. Davoudi, M. Saeedifard, K. Strunz, and V. K. Sood, “Dynamic average-value modeling of hybrid-electric vehicular power systems,” IEEE Trans. Power Delivery, vol. 27, no. 1, pp. 430-438, Jan. 2012.
[47] D. Boroyevich, R. Burgos, I. Cvetkovic, and B. Wen, “Modeling and control of three-phase high-power high-frequency converters,” in Proc. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padova, Italy, Jun. 25-28, 2018, pp. 1-133.
[48] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
[49] X. Zheng, F. Gao, H. Ali, and H. Liu, “A droop control based three phase bidirectional AC-DC converter for more electric aircraft applications,” Energies, vol. 10, pp. 400-416, Mar. 2017.
[50] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
[51] P. Demetriou, M. Asprou, J. Quiros-Tortos, and E. Kyriakides, “Dynamic IEEE test systems for transient analysis,” IEEE Systems Journal, vol. 11, no. 4, pp. 2108-2117, Jul. 2015
[52] N. Hashim, N. Hamzah, M. F. A. Latip, and A. A. Sallehhudin, “Transient stability analysis of the IEEE 14-Bus test system using dynamic computation for power systems (DCPS),” in Proc. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, Feb. 8-10, 2012, pp. 1-8.
[53] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
[54] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[55] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
[56] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis and Design, Boston, Massachusetts, USA: Cengage Learning, 2017.
[57] 維基百科,神經元。[Online]. Available: https://zh.wikipedia.org/wiki/%E7%A5%9E%E7%B6%93%E5%85%83, retrieved date: Mar. 1, 2020.
[58] M. Negnevitsky, Artificial Intelligence a Guide to Intelligent Systems, Jersey City, NJ, USA: Prentice Hall, 2011.
[59] N. Chettibi, A. Mellit, G. Sulligoi, and A. Massi Pavan, “Adaptive neural network-based control of a hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1667-1679, May 2018.
[60] R. D. Brandt and F. Lin, “Adaptive interaction and its application to neural networks,” Information Sciences,vol. 121, pp. 201-215, Dec. 1999.
[61] F. Lin, R. D. Brandt, and G. Saikalis, “Self-tuning of PID controllers by adaptive interaction,” in Proc. 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), Chicago, IL, USA, Jun. 28-30, 2000, pp. 3676-3681.
[62] R. Grino, G. Cembrano, and C. Torras, “Nonlinear system identification using additive dynamic neural networks-two on-line approaches,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 2, pp. 150-165, Feb. 2000.
[63] T. Orłowska-Kowalska, F. Blaabjerg, and J. Rodríguez, Advanced and Intelligent Control in Power Electronics and Drives, Heidelberg, Berlin, Germany: Springer, 2014.
[64] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. Marques, “Virtual flux based direct power control of three-phase PWM rectifiers,” in Proc. 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, Italy, Oct. 8-12, 2000, pp. 2369-2375.
[65] K. W. Joung, T. Kim, and J. Park, “Decoupled frequency and voltage control for stand-alone microgrid with high renewable penetration,” IEEE Trans. Industry Applications, vol. 55, no. 1, pp. 122-133, Feb. 2019.
[66] K. De Brabandere, B. Bolsens, J. V. d. Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. Power Electronics, vol. 22, no. 4, pp. 1107-1115, Jul. 2007.
[67] IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE Standard 1547, 2018.
[68] M. Taghizadeh, M. Mardaneh, and M. S. Sadeghi, “A new method of voltage and frequency control in isolated microgrids using enhanced droop controller optimized by frog algorithm,” Journal of Renewable and Sustainable Energy, vol. 6, no. 013136, pp. 1-13, Feb. 2014.
校內:2026-08-02公開