| 研究生: |
邱奕銘 Chiu, I-Min |
|---|---|
| 論文名稱: |
二維矩陣編碼於頻域/空域光分碼多重擷取系統之設計與效能分析 Performance Analyses of Hybrid MQC/M-Matrices Coding on Frequency/ Spatial Optical CDMA System |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 光分碼多工擷取系統 、頻域振幅編碼 、二維矩陣編碼 |
| 外文關鍵詞: | optical CDMA, two-dimensional codes, spectral amplitude coding |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光分碼多重擷取(Optical Code-Division Multiple-Access, OCDMA)技術提供彈性與安全性的網路傳輸,使用者可以同時地非同步擷取網路系統,因此,非常適合應用於區域網路的架構下。在一維頻域振幅編碼 (SAC)中,早期所採用的M-sequence codes、Hadamard codes等可以消除多重擷取干擾(MAI),但是在使用者多的干擾情況下會產生嚴重的相位引致強度雜訊(PIIN),進而影響系統的效能。
近年來,有一種新的編碼方式,修正原先的展時編碼轉換成頻域編碼用於頻域振幅編碼中,這種編碼由於碼的交互相關性低,可以減少碼在頻域上的波長碰撞,大幅地降低系統的強度雜訊,而MQC codes是屬於這類的編碼之ㄧ。由於光訊號的單極性(unipolar)特性,一維編碼的長度必須夠長以提供更多的使用者。然而,此類系統受限於光源頻寬有限,編碼的長度如果過長會使得系統變的不切實際。因此,二維編碼的出現是為了改善之前一維編碼的缺點,但仍保有其優點與特性。
在本篇論文中,我們提出一個新的二維編碼架構,這種編碼是由頻域編碼和空域編碼兩部份組合而成。頻域的編碼是採用MQC codes,其編解碼裝置是利用可調式布雷格光柵(FBGs)來完成;空域的編碼採用M-sequence codes,其編解碼裝置是分別利用分光器(splitter)或集光器(combiner)來完成。我們將這一個新的二維編碼應用於非同步之光分碼多重擷取系統上,分析其效能並與先前提出的二維編碼系統做比較。
在我們所提出的系統架構,不僅增加編解碼器的可調性,提供消除多重擷取干擾的能力,避免光路路遊時間的效應等多項優點,而且在某一固定的錯誤率下能夠大幅地提升使用者上線的數目。這是一套低成本、架構簡單又容易實現的光分碼多重擷取系統。
Optical code-division multiple access (OCDMA) techniques not only provide a flexible and secure transmission, but also allow multiple users access the network asynchronously and simultaneously, therefore, they are the most suitable solutions in local area network. In early one-dimensional (1-D) spectral-amplitude coding (SAC) systems using M-sequences codes or Hadamard codes can eliminate the multiple access interference (MAI), but there will be serious phase-induced intensity noise (PIIN). This intensity noise will result in system performance degradation when a large number of users involved.
In recent years, a code family such as Modified Quadratic Congruence (MQC) codes that modified time-spreading codes to spectral amplitude coding codes can significantly reduce the effect of PIIN. This is because the low cross-correlation value between two different codewords can decrease beating among wavelengths, so, the system has a better performance. Due to the unipolar characteristic of optical signals, the code length has to be long enough to support more users. However, the bandwidth of optical source is the limited-factor for spectral amplitude coding and the system will become impractical as the code length longer. Hence, the development of two-dimensional (2-D) codes is to improve several shortcomings of former ones but advantages are still preserved.
In this thesis, we propose a new 2-D code family for frequency/spatial SAC OCDMA system and the associated coding/decoding scheme. In frequency domain, we utilize MQC codes and the coding/decoding device is based on tunable fiber Bragg gratings (FBGs); in spatial domain, we adopt M-sequence codes and the coding/decoding device is based on splitter/combiner. We apply this new 2-D code family in an asynchronous optical CDMA system and analyze the proposed system performance. Comparisons with former system using 2-D codes are also shown for a reference.
In our proposed system configuration, it has several advantages including tunability, the ability of MAI cancellation, and no round-trip time delay problem. Moreover, the number of active users is increased under a given bit-error-rate (BER). This is a low cost, simple, and easy implementation OCDMA system.
[01]. A. Stok and E.H. Sargent, “Lighting the Local Area: Optical Code-Division
Multiple Access and Quality of Service Provisioning,” IEEE Network, vol.
14, no. 6, pp. 42–46, Nov.-Dec. 2000.
[02]. K.O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and
Overview,” J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug.
1997.
[03]. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol., vol. 15, no.
8, pp. 1277-1294, Aug. 1997.
[04]. N. Karafolas, and D. Uttamchandani, “Optical Fiber Code Division Multiple
Access Networks: A Review,” Optical Fiber Technol. 2, no. 0017, pp.
149-168, 1996.
[05]. J.A. Salehi, “Code Division Multiple-Access Techniques in Optical Fiber
Networks- Part I: Fundamental Principles,” IEEE Trans. Commun., vol. 37,
no. 8, pp. 824-833, Aug. 1989.
[06]. J.A. Salehi, and C.A. Brackett, “Code Division Multiple-Access Techniques
in Optical Fiber Networks–Part II: Systems Performance Analysis,” IEEE
Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug. 1989.
[07]. F.R.K. Chung, J.A. Salehi, and V.K. Wei, “Optical Orthogonal Codes:
Design, Analysis and Applications,” IEEE Trans. Inform. Theory, vol. 35,
no. 3, pp. 595–604, May 1989.
[08]. R. Fuji-Hara, and Y. Miao, “Optical Orthogonal Codes: Their Bounds and New
Optimal Constructions,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp.
2396– 2406, Nov. 2000.
[09]. A.A. Shaar, C.F. Woodcok, and P.A. Davies, “Bounds On the Cross-
Correlation Functions of State m-Sequences,” IEEE Trans. Commun., vol.
com-35, no. 3, pp. 305-312, March 1987.
[10]. P.R. Prucnal, M.A. Santoro, and T.R. Fran, “Spread Spectrum Fiber Optic
Local Area Network Using Optical Processing,” IEEE/OSA J. Lightwave
Technol., vol. 4, no. 5, pp. 547-554, May 1986.
[11]. S.V. Maric, Z.I. Kostic, and E.L. Titlebaum, “A New Family of Optical Code
Sequences for Use in Spread-Spectrum Fiber-Optic Local Area Networks,”
IEEE Trans. Commun, vol. 41, no. 8, pp. 1217-1221, Aug. 1993.
[12]. S. Yegnanarayanan, A.S. Bhushan, and B. Jalali, “Fast Wavelength-Hopping
Time-Spreading Encoding/Decoding for Optical CDMA,” IEEE Photon. Technol.
Lett., vol.12, no. 5, pp. 573 – 575, May 2000.
[13]. H. Fathallah, L.A. Rusch, and S. LaRochelle, “Passive Optical Fast
Frequency- Hop CDMA communications system,” J. Lightwave Technol., vol. 17
, no. 3, pp. 397–405, March 1999.
[14]. H. Fathallah, and L.A. Rusch, “Robust Optical FFH-CDMA Communications:
Coding in Place of Frequency and Temperature Controls,” J. Lightwave
Technol., vol. 17, no. 8, pp. 1284–1293, Aug. 1999.
[15]. L.R. Chen, “Flexible Fiber Bragg Grating Encoder/Decoder for Hybrid
Wavelength- Time optical CDMA,” IEEE Photon. Technol. Lett., vol. 13, no.
11, pp. 1233–1235, Nov. 2001.
[16]. R.M.H Yim, J. Bajcsy, and L.R. Chen, “A New Family of 2-D Wavelength-Time
Codes for Optical CDMA with Differential detection,” IEEE Photon. Technol.
Lett., vol. 15, no. 1, pp. 165 – 167, Jan. 2003.
[17]. L. Tancevski, I. Andonovic, M. Tur, and J. Budin, “Hybrid Wavelength
Hopping/Time Spreading Code Division Multiple Access Systems,” IEE Proc.,
Optoelectronics, vol. 143 , no. 3, pp. 161 -166, June 1996.
[18]. L. Tancevski and L.A. Rusch, “Impact of The Beat Noise on The performance
of 2-D Optical CDMA Systems,” IEEE Commun. Lett., vol. 4, pp. 264-266,
Aug. 2000.
[19]. S.P. Wan, and Y. Hu, “Two-Dimensional Optical CDMA Differential System
with Prime/OOC Codes,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp.
373 – 1375, Dec. 2001.
[20]. E. Park, A.J. Mendez, and E.M. Garmire, “Temporal/Spatial Optical CDMA
Networks-Design, Demonstration, and Comparison with Temporal Networks,”
IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
[21]. M. Razavi, and J.A. Salehi, “Temporal/Spatial Fiber-Optic CDMA Systems
with Post- and Pre-Optical Amplification,” IEEE Tran. Commun., vol. 50,
no. 10, pp. 1688–1695, Oct. 2002.
[22]. E.S. Shivaleela, K.N. Sivarajan, and A. Selvarajan, “Design of a New
Family of Two- Dimensional Codes for Fiber-Optic CDMA Networks,” J.
Lightwave Technol., vol. 16, no. 4, pp. 501-508, April 1998.
[23]. M. Kavehrad, and D. Zaccarin, “Optical Code-Division-Multiplexed Systems
Based on Spectral Encoding of Noncoherent Sources,” J. Lightwave Technol.,
vol. 13, no. 3, pp. 534-545, March 1995.
[24]. L. Nguyen, B. Aazhang, and J.F. Young, “All-Optical CDMA with Bipolar
codes,”Electron. Lett., vol. 31, no. 3, pp. 469-467, March 1995.
[25]. E.D.J. Smith, P.T. Gough, and D.P. Taylor, “Noise Limits of Optical
Spectral- Encoding CDMA Systems,” Electron. Lett., vol. 31, no. 17, pp.
1469–1470, Aug. 1995.
[26]. J. F. Huang and D. Z. Hsu, “Fiber-Grating-Based Optical CDMA Spectral
Coding with Nearly Orthogonal M-sequence Codes,” IEEE Photon. Technol.
Lett., vol. 12, no. 9, pp. 1252-1254, Sept. 2000.
[27]. J. F. Huang and C. C. Yang, “Reductions of Multiple-Access Interference in
Fiber- Grating-Based Optical CDMA Network,” IEEE Trans. Commun., vol. 50,
no. 10, pp. 1680-1687, Oct. 2002.
[28]. C. C. Yang, J. F. Huang, and S. P. Tseng, “Optical CDMA Network Codecs
Structured With M-Sequence Codes Over Waveguide-Grating Routers,” IEEE
Photon. Technol. Lett., vol. 16, no. 2, pp. 641-643, Feb. 2004.
[29]. D. Zaccarin and M. Kavehrad, “An Optical CDMA System Based on Spectral
Encoding of LED,” IEEE Photon. Technol. Lett., vol. 5, no. 4, pp. 497-482,
1993.
[30]. X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of
a new code for spectral-amplitude-coding optical CDMA systems,” in IEEE
6th Int. Symp. Spread Spectrum Techniques Applications, vol. 1, 2000, pp.
174 -178.
[31]. Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic
congruence codes for fiber Bragg-grating-based spectral-amplitude-coding
optical CDMA systems,” J. Lightwave Technology, vol. 19, pp. 1274 – 1281,
Sept. 2001.
[32]. Z. Wei, H. Ghafouri-Shiraz, and, H.M.H. Shalaby, “Performance Analysis of
Optical Spectral-Amplitude-Coding CDMA Systems Using a Super-Fluorescent
Fiber Source,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 887-889,
Aug. 2001.
[33]. E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance Enhancement of
Spectral-Amplitude-Coding Optical CDMA Using Pluse-Position Modulation,”
IEEE Trans. Commun., vol. 46, no. 9, pp.1176-1185, Sept. 1998.
[34]. Z. Wei, and H. Ghafouri-Shiraz, “Proposal of a Novel Code for Spectral-
Amplitude- Coding Optical CDMA Systems,” IEEE Photon. Technol. Lett., vol.
14, no. 3, pp. 414-416, March 2002.
[35]. Chao-Chin Yang and Jen-Fa Huang, “Two-dimensional M-matrices coding in
Spatial/Frequency Optical CDMA Networks,” IEEE Photon. Technol. Lett.,
vol. 15, no. 1, pp. 168-170, Jan. 2003.
[36]. R.A. Griffin, D.D. Sampson, and D.A. Jackson, “Coherence Coding for
Photonic Code-Division Multiple Access Networks,” IEEE J. Lightwave
Technol., vol. 13, no. 9, pp. 1928-1837, Sept. 1995.
[37]. C.F. Lam, “To Spread or Not to Spread: The Myths of Optical CDMA,” IEEE
LEOS 2000 Annual Mtg., 2000, vol. 2, pp. 810-811.
[38]. R. Scholtz, “The Spread Spectrum Concept,” IEEE Trans. Commun., vol. 25,
no. 8, pp. 748-755, Aug. 1977.
[39]. G. Vannucci, “Combining frequency division multiplexing and code division
multiplexing for high capacity optical network,” IEEE Network, vol. 3, no.
2, pp. 21-30, March 1989.
[40]. M. Brandt-Pearce and B. Aazhang, “Multiuser Detection for Optical Code
Division Multiple Access Systems,” IEEE Trans. Commun., vol. 42, no.
2/3/4, pp. 1801-1810, Feb. /Mar./Apr. 1994.
[41]. A. Stock and E.H. Sargent, “The Role of Optical CDMA in Access Networks,”
IEEE Commun. Mag., pp. 83-87, Sept. 2002.
[42]. Agilent Technologies 83438A Erbium ASE Source User’s Guide.
[43]. M. Arumugam, “Optical fiber communication – An overview,” J. Physics,
vol. 57, Nos 5&6, pp.849-869, Nov. & Dec. 2001.