| 研究生: |
許育維 Hsu, Yu-Wei |
|---|---|
| 論文名稱: |
以資源描述架構探討跨域統計資料之流通與應用 Distribution and Application of Cross-domain Statistical Data with Resource Description Framework |
| 指導教授: |
洪榮宏
Hong, Jung-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 政府開放資料 、統計資料 、空間單元架構 、RDF 、SPARQL |
| 外文關鍵詞: | government open data, statistical data, spatial units structure, RDF, SPARQL |
| 相關次數: | 點閱:164 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著政府開放資料之推廣,各領域資料透過網際網路平台提供使用者進行後續應用設計與資料整合之加值應用,成為資料流通之主要趨勢。然而目前提供之開放資料常以供應為主要目標,缺乏語意之考量,資料於各方解讀差異形成一大障礙。根據全球網際網路創始人Tim Berners-Lee提出之語意網架構,語意概念之融入可突破資料解讀之限制,形成語意相互關聯之鏈結資料(Linked Data)架構,同時結合開放資料的觀點,亦提出開放資料五星評比之概念,星數等級愈高,資料愈能夠開放地運用。在地理資訊開放資料領域中,我國之政府開放資料目前多為三星等級資料,仍有提升成語意設計考量,進而提升後續整合應用之空間。
統計資料為專業領域針對其業務職掌持續調查之成果,可提供國家各類面向發展之了解及參考。由於可進行統計資料調查及發布之單位眾多,典型具有分散建置之特性。但在應用上,統計資料卻有高度之跨域資訊結合分析需求,因此不但必須確保資訊之流通,更須建立正確之認知及掌握不同領域資料之特性,否則不但應用成效可能大打折扣,甚至可能發生嚴重之錯誤。有鑑於現行機制在語意描述及跨域整合上仍有不足,本研究使用全球資訊網協會(World Wide Web Consortium, W3C)制定之資源描述架構RDF (Resource Description Framework),針對空間化統計資料,考量空間、時間與主題指標三個面向,分析空間資料與統計資料之特性並設計開放之描述架構,並引用現有字彙集(vocabulary)標準,藉此達成空間化統計資料之語意描述。本研究提出之架構以空間統計單元之參考架構為核心,提供各領域建置統計資料時之共同參考,由此於網際網路環境建立一致之跨域統計資訊鏈結架構,除賦予統計資料空間之意涵,並可便利跨域之整合。相較過去業務運作時常由單一領域依照需求設計及包裝,缺乏完整語意或識別碼,必須由使用者以本身之專業認知避免錯誤認知之情形,基於本架構之作法可提昇統計資訊包裝時之正確性與關聯性,達成落實空間資料基礎建設專業分工及跨域整合之目標。基於本研究之標準化空間單元架構,當各領域統計資料均可提升至四星或五星等級之開放資料後,可進一步以空間資訊科技提昇跨域應用分析之效益及促進領域之資訊交換,改善決策之品質。
With the promotion of the government open data policy, information from various domains is now available via the open data platforms on the Internet for users to develop any applications to fit their needs. This has become the major trend of data circulation nowadays. However, the currently circulated open data is only focusing on the “open” aspect and does not fully consider the requirements of the “semantics” aspect of the data. The lack of correct understading about acquired data becomes a major obstacle for the successful sharing and usage of geospatial resources. Tim Berners-Lee argues the addition of semantic consideration can successfully remove the barriers of data interpretation, form a “Linked Data” structure with semantic meanings, and create the sharing environment on the basis of Linked Open Data (LOD). As the governemt’s geospatial open data in Taiwan is mostly in 3-star rating following the the 5-star deployment scheme, how to improve its rating and facilitate a more effective sharing environment by adding semantic considerations should receive more attentions.
In view of the lack of semantic description and the improvement of cross-domain integration for current sharing mechanism, this study proposes a standardized framework for geospatial statistical data by using Resource Description Framework (RDF) from the World Wide Web Consortium (W3C). With the concept of “linked data” as its core, the framework design mainly considers the geospatial, temporal and theme modelling requirments and intends to serve as the common basis for the schema design of both the nation-wide stiatistical unit reference systems and domain geostatistical data, thereby establishing a consistent cross-domain statistical information linked architecture in the Internet environment. Existing “vocabularies” standards are introduced to provide better semantic interporability among geospatial data from different domains and SPARQL is used to demonstrate the proposed solution can successfully address various issues regariding the process of geostatistical data from single or even multiple domains. After the open geostatisitical data is designed with enhanced semantic information, the linked data technology can facilitate the transparent exchange of geospatial statistical information and enable the possibilities of cross-domain applicaitons in the future.
Adida, B., Birbeck, M., McCarron, S., & Pemberton, S. (2008). RDFa in XHTML: Syntax and processing. Recommendation, W3C, 7, 41. https://www.w3.org/TR/rdfa-syntax/
Aghaei, S., Nematbakhsh, M. A., & Farsani, H. K. (2012). Evolution of the world wide web: From WEB 1.0 TO WEB 4.0. International Journal of Web & Semantic Technology, 3(1), 1-10.
Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., & Stein, L. A. (2004). OWL web ontology language reference. W3C recommendation, 10(02). https://www.w3.org/TR/owl-ref/
Beckett, D., Berners-Lee, T., Prud’hommeaux, E., & Carothers, G. (2014). RDF 1.1 Turtle. World Wide Web Consortium. https://www.w3.org/TR/turtle/
Beckett, D., & McBride, B. (2004). RDF/XML syntax specification (revised). W3C recommendation, 10(2.3). https://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
Berners-Lee, T. (1998). The World Wide Web: A very short personal history. Tim Berners-Lee, 7.
Berners-Lee, T. (2006). “Linked Data – Design Issues”, https://www.w3.org/DesignIssues/LinkedData.html
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american, 284(5), 28-37.
Brickley, D., & Miller, L. (2015). FOAF Vocabulary Specification 0.99 (2014). Namespace Document. Available online: http://xmlns. com/foaf/spec/
Capadisli, S., Auer, S., & Ngonga Ngomo, A. C. (2015). Linked SDMX data. Semantic Web, 6(2), 105-112.
Choudhury, N. (2014). World wide web and its journey from web 1.0 to web 4.0. International Journal of Computer Science and Information Technologies, 5(6), 8096-8100.
Gandon F., & Schreiber, G. (2014). RDF 1.1 XML Syntax. W3C recommendation. https://www.w3.org/TR/rdf-syntax-grammar/
Goodwin, J., Dolbear, C., & Hart, G. (2008). Geographical linked data: The administrative geography of great britain on the semantic web. Transactions in GIS, 12, 19-30.
Harris, S., Seaborne, A., & Prud’hommeaux, E. (2013). SPARQL 1.1 query language. W3C recommendation, 21(10), 778. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
Hart, G., & Dolbear, C. (2013). Linked data: a geographic perspective. CRC Press.
Herring, J. (2011). OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture. OGC Document, 4(21), 122-127.
Hobbs, J. R., & Pan, F. (2006). Time ontology in OWL. W3C working draft, 27, 133.
Kauppinen, T., Väätäinen, J., & Hyvönen, E. (2008, June). Creating and using geospatial ontology time series in a semantic cultural heritage portal. In European Semantic Web Conference (pp. 110-123). Springer, Berlin, Heidelberg.
Markoff, J. (2006). Entrepreneurs see a web guided by common sense. New York Times, 12, 2006.
Meroño-Peñuela, A., Ashkpour, A., Guéret, C., & Schlobach, S. (2017). CEDAR: The Dutch historical censuses as linked open data. Semantic Web, 8(2), 297-310.
Miles, A., & Bechhofer, S. (2009). SKOS simple knowledge organization system reference. W3C recommendation, 18, W3C. https://www.w3.org/TR/skos-reference/
Miller, P. (2010). Linked Data and Government. ePSI Topic Report, 7. Brussels, The ePSI Platform.
O'reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. Communications & strategies, (1), 17.
Perry, M., & Herring, J. (2012). OGC GeoSPARQL-A geographic query language for RDF data. OGC implementation standard.
Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. W3C Recommendation. https://www.w3.org/TR/rdf-sparql-query/
Schneider, M., Carroll, J., Herman, I., & Patel-Schneider, P. F. (2009). OWL 2 web ontology language RDF-based semantics. W3C Recommendation. https://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
Shadbolt, N., & O'Hara, K. (2013). Linked data in government. IEEE Internet Computing, 17(4), 72-77.
Yamamoto, D., Ioku, A., Seki, Y., Matsuda, J., Takeda, H., Ohmukai, I., ... & Nishimura, S. (2017). Geographic Area Representations in Statistical Linked Open Data of Japan. In HybridSemStats@ ISWC.
內政部統計處(2011)。「99年國土資訊系統社會經濟資料庫共通平台規劃、建置及推動計畫」委外服務案成果報告書。
西村正貴(2017)。Linked Open Data (LOD) による統計データの提供:政府統計データ(e-Stat)の新しい形,情報管理(59)12, 812-821。
吳泰廷、楊文新、崔文(2012)。語意網、鏈結資料與開放資料之實務技術與應用。電腦與通訊,145,102-109。
柯皓仁、陳亞寧(2013)。鏈結資料在圖書館的應用。2013全國學術電子資訊資源共享聯盟 (CONCERT) 國際研討會。
陳欣宜(2014)。以自我描述圖徵觀點探討地形資料之管理與共享。國立成功大學測量及空間資訊學系學位論文,1-181
楊靜岑(2018)。基於標準代碼之跨域統計資料整合與視覺化展示。國立成功大學測量及空間資訊研究所學位論文,1-155。
鄧東波、莊庭瑞(2014)。使用語意網技術建立連結的地名集。
劉惠玲、胡哲嘉(2014)。最小統計區在統計領域之應用。台灣地理資訊年會暨學術研討會。
鄭智遠、柯皓仁(2015)。以鏈結資料發展電影資訊系統之研究。國家圖書館館刊,(104年1),1-32。