| 研究生: |
陳彥嘉 Chen, Yan-Jia |
|---|---|
| 論文名稱: |
不同空間內插法用於降雨逕流模擬之分析比較研究 A comparative study on spatial interpolation techniques for rainfall-runoff simulation |
| 指導教授: |
羅偉誠
Lo, Wei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 降雨分佈 、空間內插法 、降雨逕流 、地文性淹排水模式 |
| 外文關鍵詞: | interpolation algorithm, areal precipitation, PHD model, rainfall-runoff simulation |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
颱風時期降雨所產生的大量地表逕流,往往造成下游人口稠密地區受到的洪水威脅,對於高降雨強度且集流時間短促的台灣,集水區降雨逕流的模擬,為往後水利工程建設、水理演算及洪水預報的基本要求。降雨的空間分佈為降雨逕流模擬必要的輸入條件,不同的降雨分佈會造成逕流結果有所不同,因此本研究欲透過逕流歷線結果,探討空間內插法之適用性。
研究區域為西部高屏溪及東部和平溪流域,以2010年凡那比、2012年泰利及2012年天秤颱風事件,作為高屏溪流域之研究案例;以2013年天兔及2010年凡那比颱風事件,作為和平溪流域之研究案例。本研究利用距離權重反比法、一般克利金法、最小曲率法、徐昇網法以及趨勢面分析法等五種空間內插法建置降雨分佈及歷程,結合地文性淹排水模式模擬演算水位站水位歷線,並與水位站水位觀測值做比較。
本研究使用四個統計誤差包括均方根誤差、平均絕對誤差、相關係數及峰值誤差,以量化水位模擬結果與觀測水位資料,五場颱風事件於各水位站誤差統計分析結果,方均根誤差及平均誤差均低於1公尺,而相關係數均在0.8以上,模擬與觀測水位結果大致相符。
降雨空間分佈取決於其不同之內插特性,對於大尺度的高屏流域,以趨勢面分析法產置的降雨分佈歷程,透過降雨逕流演算,模擬結果較佳;相較於局部地區的和平溪流域而言,則以一般克利金法較為適合。
The heavy rainfall of Typhoons usually causes nationwide floods, in turn, yielding huge loss of human lives and economics. Taiwan is located in the zone where active tropical cyclone frequently forms in the western Pacific Ocean, so rainfall intensity is typically high yet with very short the concentration time of flow. An accurate estimation of areal precipitation by interpolating point observations is essential to hydrological modeling for water resources planning. Various interpolation algorithms have been suggested for calculating areal precipitation from point measurements; however, the influence of interpolation algorithms on the prediction of river stage still remains unclear and thus has to be investigated in a more scientific way to compare with recorded stage measurements. Therefore, in the current study, five widely-applied interpolation methods, the Thiessen polygon method, the ordinary Kriging method, the spline surface method, the inverse distance weighted method, and the trend surface analysis method, were selected as illustrative examples to quantitatively investigate this impact. The rainfall-runoff simulation was implemented using the physiographic drainage-inundation (PHD) model. Two different-size watersheds which are respectively located in southwestern Taiwan (Gaoping creek watershed) and eastern (Hoping creek watershed) were selected. Three Typhoon events (Typhoon Fanapi, 2010; Typhoon Talim, 2012; Typhoon Tembin, 2012) were used for hydrological modeling in the former watershed; two Typhoon events (Typhoon Fanapi, 2010; Typhoon Usagi, 2013) were used for hydrological modeling in the latter watershed.
Four objective functions, root mean square error (RMSE), mean absolute error (MAE), correlation coefficient, and error rate of peak water level, were applied to evaluate the error in determining river stages. Our results reveal that all values of RMSE and MAE are below 1 meter and the value of R is above 0.8, indicating good agreement between simulated and observed stages. It is shown that the accuracy of hydrological modeling using different interpolation methods for estimating areal precipitation is significantly sensitive to watershed geological attributes. Among all interpolation, the trend surface analysis method provides the best interpolation in the greater watershed (Gaoping creek watershed) whereas the best one in the smaller watershed (Hoping creek watershed) is the ordinary Kriging method. Thus, an appropriate areal-precipitation interpolation technique is very crucial to obtain better rainfall-runoff simulation result.
1. Balica, S. F., Popescu, I., Beevers, L., & Wright, N. G., 2013. Parametric and physically based modelling techniques for flood risk and vulnerability assessment: a comparison. Environmental Modelling & Software, 41, 84-92.
2. Burrough, P. A., & McDonnell, R. A., 1998. Principles of GIS. Oxford University Press, London.
3. Chen, C. N., Tsai, C. H., & Tsai, C. T., 2007. Reduction of discharge hydrograph and flood stage resulted from upstream detention ponds.Hydrological processes, 21(25), 3492-3506.
4. Chen, F. W., & Liu, C. W., 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209-222.
5. Cunge, J. A., 1975. Two dimensional modeling of flood plains. Unsteady flow in open channels, 2, 705-762.
6. Di Piazza, A., Conti, F. L., Noto, L. V., Viola, F., & La Loggia, G., 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy.International Journal of Applied Earth Observation and Geoinformation,13(3), 396-408.
7. Ducco, G., Bechini, L., Donatelli, M., & Marletto, V., 1998. Estimation and spatial interpolation of global solar radiation in the Po valley, Italy. InProceedings of the 5th ESA Congress (Vol. 28, pp. 139-140).
8. Elbasiouny, H., Abowaly, M., Abu_Alkheir, A., & Gad, A., 2014. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena, 113, 70-78.
9. Faurès, J. M., Goodrich, D. C., Woolhiser, D. A., & Sorooshian, S., 1995. Impact of small-scale spatial rainfall variability on runoff modeling. Journal of Hydrology, 173(1), 309-326.
10. Freeze, R. A., & Harlan, R. L., 1969. Blueprint for a physically-based, digitally-simulated hydrologic response model.Journal of Hydrology, 9(3), 237-258.
11. Fiedler, F. R., 2003. Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. Journal of Hydrologic engineering, 8(4), 219-221.
12. Gentile, M., F. Courbin, and G. Meylan., 2013. Interpolating point spread function anisotropy. Astronomy & Astrophysics 549: A1.
13. Haggett, P., Cliff, A. D., & Frey, A., 1977. Locational analysis in human geography. Tijdschrift Voor Economische En Sociale Geografie, 68(6).
14. Kim, S. N., Lee, W. K., Shin, K. I., Kafatos, M., Seo, D. J., & Kwak, H. B., 2010. Comparison of spatial interpolation techniques for predicting climate factors in Korea.Forest Science and Technology, 6(2), 97-109.
15. Kumar, V., & Ramadevi, 2006. Kriging of groundwater levels—A case study. Journal of Spatial Hydrology, 6(1), 81–94.
16. Kurtzman, D., Navon, S., & Morin, E., 2009. Improving interpolation of daily precipitation for hydrologic modelling: Spatial patterns of preferred interpolators. Hydrological Processes, 23(23), 3281-3291.
17. Laouacheria, F., & Mansouri, R., 2015. Comparison of WBNM and HEC-HMS for Runoff Hydrograph Prediction in a Small Urban Catchment.Water Resources Management, 29(8), 2485-2501.
18. Li, J., & Heap, A. D., 2014. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173-189.
19. Lu, George Y., and David W. Wong., 2008. An adaptive inverse-distance weighting spatial interpolation technique.Computers & Geosciences 34.9 (2008): 1044-1055.
20. Segond, M. L., Wheater, H. S., & Onof, C., 2007. The significance of spatial rainfall representation for flood runoff estimation: A numerical evaluation based on the Lee catchment, UK.Journal of Hydrology, 347(1), 116-131.
21. Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference (pp. 517-524). ACM.
22. Shiau, J. T., Chen, C. N., & Tsai, C. T., 2012. Physiographic drainage-inundation model based flooding vulnerability assessment.Water resources management, 26(5), 1307-1323.
23. St‐Hilaire, A., Ouarda, T. B., Lachance, M., Bobée, B., Gaudet, J., & Gignac, C., 2003. Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: a case study.Hydrological Processes, 17(18), 3561-3580.
24. Tait, A., Henderson, R., Turner, R., & Zheng, X., 2006. Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface.International Journal of Climatology, 26(14), 2097-2115.
25. Thiessen, A. H., 1911. Precipitation averages for large areas. Monthly weather review, 39(7), 1082-1089.
26. Visscher, M., Nyssen, J., Pontzeele, J., Billi, P., & Frankl, A., 2014. Spatio‐temporal sedimentation patterns in beaver ponds along the Chevral river, Ardennes, Belgium. Hydrological Processes, 28(4), 1602-1615.
27. Wang, H. W., Kuo, P. H., & Shiau, J. T., 2013. Assessment of climate change impacts on flooding vulnerability for lowland management in southwestern Taiwan. Natural hazards, 68(2), 1001-1019.
28. Ziadat, F. M., 2007. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma, 140(1), 73-80.
29.石全隆,2005,三爺溪流域淹水潛勢及綜合治理規劃分析研究,國立成功大學水利及海洋工程學系碩士論文。
30. 巫孟璇,2013,地文性淹水即時預報模式之發展與應用,國立成功大學水利及海洋工程研究所博士論文。
31. 柳文成、張傳恩、楊智傑,2014,結合 HEC-HMS 與調適性模糊類神經網路模式於不同預報時間之逕流模擬,臺灣水利期刊,第 62 卷,第 4 期。
32. 曾宇代,1999,空間推估法結合地理資訊系統模擬臭氧濃度空間分佈之研究,國立中興大學環境工程學系碩士論文。
33. 游獻章,2005,國內重大公共工程計畫優先順序之研究,國立中央大學土木工程研究所碩士論文。
34. 楊昌儒,2000,地文性淹水預報系統建構之研究,國立成功大學水利及海洋工程研究所博士論文。
35. 經濟部水利署第一河川局,2014,民國103年和平溪水系河川情勢調查。
36. 經濟部水利署第七河川局,2014,民國103年度高屏溪流域疏濬工程成效評估。
37. 蔡長泰、蔡智恆,1997,梯形寬頂堰堰流公式適用性之研究,台灣水利季刊, 第四十五卷,第二期,第 29-45 頁。
38. 儲繼光,2005,利用B樣條曲面表示及更新台灣大地水準面之研究,國立成功大學測量及空間資訊學系碩士論文。